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Prefacé

This book on Caleulus has been specially written to meet the requirements of the

B.Sc. Semester-] Subject Code : USOICMTH21(T) students of Sardar Patel
University.

The aim of the book is to present the subject in such a way that an average student
may find no difficulty in understanding it. Each topic in the book is treated in an easy,

clear style and at the same time the treatment is rigorous. The language is simple and
easily understandable.

. Each unit of the book contains complete theory and a fairly large number of solved

examples. The number of unsolved examples is also numerous and they are well

. graded. Most of them have been selected from the standard books available on the

subject.

The authors does not claim any originality. All available standard books on the
subject have been freely consulted during the preparation of this book.

Any suggestion for the improvement of the book will be gratefully received.

The authors are very thankful to the publishers for their full cooperation in br\ihging
out the book in the present nice form.

— The Authors
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| PROBLEMS AND EXERCISES IN CALCULUS |

List of Practical :

1. Hyperbf)lic Functions, Successive Derivative, Higher Order Derivatives
ntt Derivatives of Standard Fogm, Leibnitz’s Theorem and its Applications.

2. L’Hosyital Rule, Technics of Sketching Conics, Reflection Properties of Conics,
Rotation of axes and Second Degree Equations, Classification into Conics using
Discriminant. .

3. Curve Tracing in Cartesian coordinates, Parametric Equations, Tracing of Parametric
Curves, :

Polar cobrdinates,,Curve;. Tracing in Polar coordina_tes,,,:'_PQl‘ar, Equation of Conics.

Reduction Formulae "'fbr'-lntggra_tidh '--of.sih"x, coshx sin”x, cosix, tanx, cotx, seci,
cosec”, Volumes by Slicing, Disks and Washers Methods, . Volumes by Cylindrical
Shells. o o T

6. Arc Length, Arc 'Length of Parametric Curves and Polar Curves, Derivation of
Intrinsic Equat_ions of a Curve, Area of Surface of Revolution.

7. Curvature, Radius of Curvature For Cartesian, Parametric and Polar Equations,
Length of Arc as a Function. ' : ‘

8. Limit and Continuity of a Functions of Two Variables, Neighbourhood of a Point,

Partial Derivatives, Euler’s Theorem on Homogeneous Functions of Two and Three

Variables. » _ '
9. Theorem on Total DifferentiéIs, Differentiation of Composite and Implicit Functions.
10. Introduction to Vector Functions, Limits and Continuity ‘of Vector Functions,

Differentiation and Integration of Vector Functions; :

Note :
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UNIT Hyperbolic Functions, Higher Order
Derivatives, Indeterminate Forms,
1 Conic Sections

[ HYPERBOLIC FUNCTIONS |

It is found useful to define sinh x, coshx, tanh x, coth x, sech x, 'nd cosech x as follows :

inh ef - oth coshx e +e™*
sinhx = cothx = = = -
2 sinh x ef-e*
X -X
e +e 1 2
coshxy = —— sechx = = -
2 coshx ef4e*
sinh x e 1 2
tanhx = —— = £ cosechx = — =
coshx o 1g7* silhx e ~¢
' sinhx " —¢™*
sechy = — = = i

cosh x ef+e*

It may be seen that sinhx, tanhx, sechr are defined Vx e R and coth x, cosech x for all
non-zero values of R.

The reader may prove directly that the following results hold good Vx € R.
sinh(-x) = -sinhx, sinh(~x) = cosh X, ’
cosh?x — sinh2x = 1, coshZr + sinhZ¢ = cosh®y. )
cosseh(x + y) = coshx coshy + sinh x sinh y,
sinh(x + y) = sinhx coshy + coshx sinh I
It will be seen that sinhx, coshx, etc. have properties aﬁalogous to those of sinx, cosx,

llERIVATIVES OF HYPERBOLIC FUNCTIOIE'
Example-1 : Obtain following : '
1. Derivative of y = sinhr; x € R
We have

sinh x

~
LI}




dx
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& 1 4. It may be similarly shown that
= = - (ex - e-x)
dx de|2 d (coth x)
——— = — cosechZx,
1 dx
= E(e‘ +e™*) = coshx Proof is left to reader.
5. Derivative of y = sechx; x € R
d(si - '
= ____}(s;xxh %) = coshx Vx € R, We have
2. Derivative of y = coshx; x € R y = sechx = !
' cosh x
We have
_ dy _ coshx-0~1-sinhx
. & +e* = Zx— = 2
y =coshx = —~— " cosh”® x
' = :—S]—:?—x = — tanhx sechx; Vx € R. .
2% _ =% ) cosh x
= f.}'_ =2-¢ _ sinh x .
dx 2 d (sechx)
= T = — tanh x sech x.
d(coshx) _ . :
=> ——— = . .
‘ dx sinhx Vx € R, 6. It may be similarly shown that
3. Derivative of y = tanhx; x € R R d (cosech x)
——————— = - cothx cosech x.
y = tanhx dx
. S Proof is left to reader. ,
= ix_@_f_; coshx # 0 Vx € R, : :
- cosh x ’ DERIVATIVES OF INVERSE HYPERBOLIC FUNCTIONS ]
. d (éinh 0. b d (cosh x) Example-l : Obtain following :
= _d_)_’ - cosh X dx sinh ¥ dx 1. Derivative of y = sinhlx; x € R :
. cosh®x Let \
. . b R y = sinh-lx so that x = sinhy
_ cosh x-cosh x — sinh x - sinh x ,
- cosh? x : &, coshy
b 3 i ;
- cosh” x hzsmh x :v dy 1 . 1 . 1
S :’ _— = = =
cosh-x = dx ~ coshy 7 Ji1+sinh?y) Ja+x%)
= — 1 r where the sign of the radical is the same as that of coshy which we know, is always positive
_cosh®x u
, § ence, _
= sech’x: Vx € R. 5 d (sinh™! x) _ 1
whg). : T Jarah
ﬂtin-h—x) = sech’x, i
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2. Derivative of cosh-lx.

Let
y = cosh~!x so that x = coshy
dx
—— = sinh
= & inhy
d 1 1
= 2. 1

where the sign of the radical is the same as that of sinhy.

= % =+
dx  sinhy Jicosh?y ~ 1) Ja2 -1

Now, cosh-lx i.e., y is always positive so that sinhy is positive.

Hence,
d (cosh™ x) 1 51
= ) X
dx Jo2 -1
3. Derivative of tanh-lx.
Let
y = tanh-lx so that x = tanhy
dx
= —‘E = sechly
dx  sech’y 1-tanh’y 1-x?
d (tanh™ x) 1
Thus, = :
dx 1-x*"' lel <1
d (coth™ x) -1
4. = H
= 3 (21> D).
Proof is left to the reader.
5. Derivative of sech-lx,
Let
y = sech™lx so that x = sechy
dx
= _— = -
e sechy tanhy
= &1
dx sech y tanh y
=+ — l = — l
sech y . J(l —sech?y) x J(l - x?)

where the sign of the radical is the same as that tanh y.

Arin P e L L

Hyperbolic Fun
But we know that sech~ix, ie., y is always positive, so that tanhy is always positive.
-1
Hence, dech’ ) _ _ 1 , O<xxl
dx xy(1 - x*)
Derivative of cosech-lx.
Let
y = cosech~!x so that x = cosechy
= & = — cosechy cothy
dy
d 1
= —-‘)—, = - S
dx cosech y - coth y

-1 -1
+ =
cosech y - 4(cosech®y + 1) x \/('x2 +1)
when the sign of the radical is the same as that coth y.

Now, y, and therefore coth y is positive or negative according as x is positive or negative.
dy -1

= = if x >0 and
dx x,/(x’+1) ;

= e ifx <0

~xEE+D)
-t
Thus, d (cosech™ x) - -1 X #0
dx X162 +D)

Example-2 : Find the derivatives of
(1) log(coshx) (2) €™™’* (3) tanx - tanhx

Example-3 : Find ﬂ
dx

(1) y = x2 sinh 2x

b
dx

x*+cosh2x -2 +sinh2x - 2x

2x [x - cosh 2x + sinh 2x]

(2) y =sech3 (1 - x?)

dy

dx

3sech? (1 - x*) [~ sech (1~ x*) tanh (1 — x%)] (0 — 2x)

6x sech® (1 - x?) tanh (1 - x?)



e T

6

- Calculus |

Hyperbolic Functions, Higher Order Derivatives, Indeterminate Forms, Conic Sections

3) y = tan-1 (sinl_]x)-

dy _ o cosh x

dx 1+sinh%x oshx = cosh?
@) y=cosh® X

Y 2
dy- 11 _ 1
N P N
4

(5) y = cosh (sinh-1x) :

) .

szc = sinh (sinh-ly) ——Lo

Jot+
X

Vi)

| INTEGRATION OF HYPERBOLIC FUNCTIONS |

The reader may prove following results directly :

1. ‘[sinhxdx=coshx+c :
2. jcoshxdx:sinhx+c
3. [sech’xdx=tanhx +c

4. J' cosech?x dx = - cothx + ¢

5. fsechxtanhx_:tanhx+c

6. j cosech x cothx dx = — cosech x + ¢

dx
7. J-——=—=-=sinh" Z+¢
(x2+a2) a
dx
8. I—-——-——=cosh"£+c
(" -a* a
dx 1 a4x
9. Jaz_x2=;tanh';+c
dx 1 4
10. =——coth™ —+
J‘xz—az a ° a ¢

11. _ftanhxdx:lnlcoshx|+c

TR ——

Example-1 : [ cosh® x sinhx dx = :‘l— cosh®x + ¢

Example-2 : [ xsech’xdx = xtanhx - [ tanhx dx

Example-3

Example-4

Example-5

Example-6

Example-7 : [cosech x dx = [

Let

X tanhx ~ I cii’n?hlﬁ dx (Let coshx = t then sinhx dx = dp)

xtanhx—ftldt

xtanhx—1In]ti+c

xtanhx — In{coshx|+¢

I 1 (sinh 3x — 3sinhx) dx = L cosh 3x — 3 COSX + ¢
4 12 4

:jsinh3xdx =
: dx = i = sinh™'(x+1) +¢
JoE+2x+2) D+
: ;ix =—1*_[ dx > =——lcoth"(—2——{)+c
4x° -9 4 2 3 6 3}
. 2
:Isechxdx:j 2dx =2[ :xdx = 2tan”' " +¢
et & +1 _

coth x

cosech x (coth x — cosech x) dx
(coth x — cosech x)

— cosechx = u then (cothx - cosech x) cosechx dx = du \

= J‘_d_“ =injul+c=In |cothx—cosechx|'+c
u

=In

=In

=In

oshx —-1
coshx— > h +c

sinh x

. x
2sinh? =
—|+c

2 sinh % cosh g

tanh5 +c
2




8 Calculus
EXERCISE
Prove the following identities, using the definitions of the hyperbolic functions.
1 _coshx~-1
1. sinh 2x = 2sinhx coshx 8. tanh 3 x= e
2. cosh 2x = cosh?x + sinh%x 9., sech x + sinh x tanh x = cosh x
3. sinh’x= % (cosh2x—1) 10. sinh x + cosech x = cosh x coth x
4. coshlx= % (cosh2x +1) 11. (coshx —sinhx)? =cosh2x — sinh2x
5. tanh®’x +sech’x=1 12. (coshx + sinhx)" = coshnax + sinhnx
6. coth®x —cosech’x =1 13. sinh3x =3sinhx + 4sinh® x

tanhx + tanh y

. tanh(x + y)= ————-—-
7 (x+) 1+ tanhx tanhx

Defferentiate each of the given functions in Problems 1 — 18.

1. y=sinh3x 10. s=tanh vx
2. y=Incosh2x 11. s =+/tanh?
3.  y=sinh®x 12, s=¢™
4. y= x2sinh 2x 13. u =coshe*
5. y=Intanh’x 14. u =cosh (In x)
6. y=e¢"coshx 15. u=sech (sinx)
7. s =sinht? 16. u =tan”'(sinh x)
1
8. s=cosh " 17. y=sin"" (tanhx)
9. s=sech® (1-x% 18. y=sin™' (sinh x) N

19. Derive the formula [ cothu du =1In|sinhu|+ ¢
20. Exp_res.s. sechu in exponential form and show that Isech udu=2tan” e" 4 ¢

21. Show that [ cosechu du =In +c

tanh £
2

Hyperbolic Functions, Higher Order Derivatives, Indeterminate Forms, Conic Sections

Perform the following integrations,

.13
22. [sinh3xdx - : 28, [sinh x:dx
23. [sech’ 3xdx 29, [sinh?2xdx
24. [ xsech’xdx 30. | sech®2x tanh 2x dx
25. [cosh®x sinhx dx 31 | cosh?3x dx |
26. fe" tanhe® dx : 32, j tanh® x sec h2x dx
27. [ coth x dx 33. [sinxsinhx dx
Differntiate the following functions :
- X
1.  y=sinh™'2x 6. y=tanh ;
2. y=cosh™ % x 7. y=cosh (sinh™ x)
3. y=tanh™ ¢&* 8. y=sinh™ (cosx)
4. y=sinh™ (1-x?%) 9. y=sinh™(tanx)
5. y=(sinh~ x)? 10. y=cosh™'(secx)
Evaluate the following integrals :
11 d 16 .l[ dx
vx*+9 o\/x2+2x+2
dx 3
12. I 3 17. j‘ zdx
9x" - 16 2x° =1
dx 4 dx
13. f 2 18.
4x° -9 'l. x* -1
xdx Ve
14,
4 '[4—x4 19. _{9—x2
15, )
5 I x°~2x 20.

dx ' _jl'l dx

Caleulus 12018/ 2



10 _ . Calculus

| HIGHER ORDER DERIVATIVES |

8 Definition :
Higher order derivative : Let f : (a, b) — R be differentiable on (@ b). If f is
differentiable, then we say that f is twice differentiable and S” is called the second derivative

2
of f. f is also denoted py ix_{ Further, suppose the (n—1)" derivative -9 of [ exists,

If f@-D is differentiable on (a, b), then its derivative is called the n™ derivative of f and
d'l
is denoted by f® or Tix—i: If the function f is expressed in terms of y = f(x), then the
. - dy d%y d"y
successive derivatives of y are denoted by y,,y,, ..., y, or PRt
The following proposition describes the formulae for n order derivatives of some
standard functions. )

= Proposition-1 :
Let a, b, ¢ € R. Then ‘prove the following
(1) For an integer m if y'='(ax + b)™, then
Y, =mim=1)...(m-n+a" (ax + bym-*»

(m - n)!

@ If y=(ax+B)", with m € N, then y, = a (ax + by"="

SPU, September-2014 8

£< 1)*nla®
(ax + b)"*!

SPU, November-2011
SPU, September-2014

SPU, November-2011, 2010

(3) If y=(ax+b), then y, =

T (= D)a
(4) Fory =log (ax + b) ¥, =—m—,7—

(5) For y=a™, y =m"(loga)"a"*
(6) For y = e"".‘ , y" - mnemx .

) nn
(7) For y = cos(ax + b), ¥, =a"cos(ax+b+7)

. nm
(8) For'y = sin(ax + b), ¥, =a"sin (ax+b+—2—J

(9) For y=e“cos(bx+c), y, =r"e*cos(bx+c+ng,

’ b
=tan-' |2
where r = a? +b?, ®=tan (a)'

Hyperbolic Functions, Higher Order Derivatives, Indeterminate Forms, Conic Sections 11

(10) For y = e* sin (bx + €)s ¥, =r'e“sin (bx + ¢ + ney,
Proof :
(1) We prove this by Mathematical inciuction method :

For n = 1, y, = ma(ax + byn-1 |

Thus result is true for n = i.

Assume that )},, =m(m~-)(m~2)...(m—n+ Da"(ax +5)""" for a fixed n € N. Then

y =_dy_ll — _d_ 1 n m-n
1 o dx[m(m— Yo.im=n+1a (ax + b) ]

= m(fn =-1).. (m-n+ Da" de_ (ax + b)m—n)

= m(m—1)....(m = n + Da"(m — n)(ax + b)m-1-Dg
= m(m - I}ofm = (n + 1) + Da* (ax + b)n-tr+1)
Thus result is true for n + 1. | |
Hence by Mathematical induction method we say that result is true for all » € N.
(2) We prove this by Mathematical induction method :
For n = 1, y, =ma(ax + byn-!

Thus result is true for n = 1.

Assume that y, =

a” (ax + b)"~" for a fixed n € N. Then

(m = n)!
dy d m! .
P4 RSl AR | o+ pym-n
yn+l dx dx((m—n)!a (w ) )
m! d
= - n + bym-n
(m_n)!a dx((ax )" ")
= ! a" (m—n)(ax +b)"""Ng
(m—n)!
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m!

_ an+l (ax+b)(m-(ﬂ+l))
T (m=-n-1)

m!

= am*! (ax,,_b)(m—(nﬂ))
{m-(n+H)

Thus result is true for n + 1. '
Hence by Mathematical induction method we say that result is true for all n € N.
(3) Put m = — 1 in above result (1), we get '
¥, =—-l~1-1..(-1-n+Da"(ax+b)y'-"
_ (=DH"(1.234..n)a"
- (ax + b)n+l

- (- 1"nla"
(ax + b)"*!

We prove this by Mathematical induction method :

L, . o
ax+b (ax + b)

(4)
_ & D-'a -4t
(ax + b)!

Here y = log (ax + b). Forn = 1, y, =

Thus result is true for n = 1.

— 1\a~-1 — I\ an
Now assume that y, =(—i)—£——l)'—a. Then
(ax + b)"

_dy _ d (=D =Dlar
e dx dx (ax + b)*

—n-! _lgn.d_’_.___l_
- Dta dx((ax+b)")

=D n-Dla" % (ax + b)y™"

1

= (=" Yn—=1)la"*! (- n) (ax + b)~"~!

(=D nta"* (ax + by -+

It

(= D" nlan+?
(ax + b)Y+ D

Thus result is true for n + 1.

Hence by Mathematical induction method we say that result is true for all n € N..
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5 y=a™. S
Then y, =a™(loga)m =m(loga)a™ .
Similarly we get, y, =m? (loga)?a™, y, =m’ (loga)*a™ . In general,
y, =m" (loga)"a™
6) y=e™.
Then y, =me™.
Similarly we get, y, =m?e™, .y, = me™.
In general, y, =m"e™.

(7) y = cos (ax + b).

n
Then, y, =-asin(ax + b) = 4C08 (ax +b+ _2_)

Y2 =—a2sin(ax+b+§] = azcos(ax+b+22-1£]

Y3 =—a3sin(ax+b+-2£) = _a’cos(ax+b+%§)

................

Y, =—a"sin [ax+b+(—n—_2m] = a"cos[ax+b+-'127£)
(8) y = sinfax + b).

Then, y, =acos(ax + b) = asin [ax +b+ g)

2 =a*cos|ax+b+L | = asin ax+b+—2-E |
2 2

Y =a’cos(ax+b+—25-c) = a~’sin(ax+b+§-’f)

Va =a"cos[ax+b+gl;21)—n) = a”sin(a_x+b+n?n)

9 y=e™cos(bx+c).
Then y, = ae®cos(bx + c) - be™ sin(bx + ¢)
= e [acos(bx + c) — bsin(bx + ¢)]

we (1)

Let a=rcos¢ and b=rsing.
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Then r2 =g? + b* and —=tang, m

a : Hence, y, = m"|cos|mx + ntan~! (H) ~ sin (mx+ ntan~! (-—"—l))}

o 0
i = 2 2 = oLl " - . .
That is, r=+/a +b , (p‘ tan [a ) ‘ =m [cos (mx + ntan~!(e0)) — sin (mx + ntan—l(.,o))]. .
N .
ow by (1), . = m" [cos (mx + 221‘:- J— sin (m.x + 2T )J
2

Y = e™(rcosgcos (bx + ¢) — rsin@sin (bx + ¢))
= re* cos (bx + ¢ + @) ‘ . 5
Similarly, y, = r%e%cos (bx + ¢ + 29) ’ = m" Hcos (mx + il ]— sin (mx + _"_E]:’ZT
Continuing in this manner, in gencral we get, : 2
¥, =re*cos (bx + ¢ + ng) | | !

b = mo 11— 20 nn) nm\f2
where r=Ja? 452, (p__.tan-l(;). m [1 2cos(mx+ 3 )sm(mx+7):!

(10) y=e*sin (bx +¢). ) 1
- ) = m" [l —sin 2mx + nm))?

Then y, = ae™sin(bx + c) + be** cos(bx + ¢) , ' 1

e [asin(bx + ¢) + beos(bx + ¢)] SOV ¢ )| = m" [1 ~sin2mxcosnn ~ cos 2mx sin nx)2

Let a=rcos® and b=r§in<p.

1
= m" [1 - (- 1)"sin2mx]2

b
2 2 o p2 —=
Then 'a +b*=r* and P tang, : »  Example-2 :

Find y, for y=¢®*cosxsin®2x. SPU, April-2016,

November-20 10

. e
That is, r =./q? + b2, P?=tan '(_].

a Soln, :

Now by (1), : ’ Here, y = e*cosxsin?2x

¥ = e®[rcosgsin (bx + ¢) + rsin@cos (bx + c)] 2 (1 —cosdx ]

. = e¥ cosx | ————
= re"sin (bx + ¢ + @) 2 |

Similarly, y, =r?e®sin (bx+c + 2‘9) =1 e2*(cosx — cos4xC0sx)
Continuing in this manner, in gencral we get, 2

y, = rte%sin (bx + ¢ + ng) = %‘- e2* (cosx - —;— (cos5x + cos3x))

: b
=23 =tan”' | = ‘
where r=./a* +p*, @ (a)' = %ez‘ cosx—i—e“cosSx—i—e“cos?’x
m  Example-1 : . ‘ w2
gni2 ) _1 1 29 2x ( -1 5]
. ! = - x +ntan~)! — | — eX*cos| 5x + ntan~! =

If y = cosmx - sinmx, then prove that y, =m" (1-(- 1" sin2mx)? Ya 2 ¢ (x 2 2/

13::/2

%
e?* cos (Bx + ntan-! L]

P

Soln, :
Here y = cosmx — sinmx = e®*(cosmx — sinmx) .
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[ LEIBNIZ'S RULE |

m  Theorem-1 :
State and prove Leibniz’s theorem :
SPU, April-2016, 2015; Dec. 2015; Scp. 2014; Nov. 2013, 2011, 2010; June-2012

Statement :
Let i, v : E = R be sufficiently many times differentiable functions. Then for any n € N.

v), =u,v+ "Cut, vy + "Couy _pvy + o Uy,
Proof :
We prove this theorem by mathematical induction on . Note that the result for n = 1 is
W), = ul'v + uv,, which is obviously true. Suppose that the result holds for n = k. That is,
(), =uv + *Ci_ vy + ¥Couy vy + o+ uy, ’
Differentiating this we get :
(V)1 = Wy v+ iy, + KC v, + 1, v) + ¥Co(u vy + 8 qv3) + b WV +uvy
up v+ KC DU, + (FCy + 2Cup vy + (FCy + FCy)uy yvs + o +uv,

Cah vy + o+ UV

= u vt FIC Y, + FHICu, v, + ¢!
as ¥C,_, + *C, = ¥*!C,. Thus the result is true for n = k + 1. Hence the result holds for all n € N.

Note : Given a product of functions, usually it is a common practice to select the function
as u whose p derivative is known us.

m  Example-1 :
If y = xlog (x — 1), then find y,.
Soln, :
" Letu= log (x — 1), v = x, then by Leibniz’s Theorem,
' ), =u v+ "Cu, v+ "Chuy gy, i,
Hence,

(=" (n-2)
(X — ])n—-l

DT !
Y = 7 (x—l)"

X +n 1 +0+ ...

o (= Dr-2(- Dn-1(n-2)x . (- 1)"_2(n—2)!
(x =1 SIS

(=D =2)!
= S EaeDanGe-h)

=Dt -2

r— (x—-n)

s Example-2

H.x = cos. (,—l-' logy],' then find "y, (0). SPU, April-2016, Dec. 2015
m

Seln, .
We can write the given relation as

1
cos”'x=—logy
m

= mcos'x=logy

= y=emcos'lx wree eres avee sers eees (3)
Then, y, =em 's | T

. J1-x2
= Jl=xty=-my 4)

Hence, (1- x2)y? = m?y?
By differentiating this we get,

20 - xV)yy, ~ 2xp} =2miyy, = (1-x?) V2 =X =My vt e s 5y
Hence by Leibniz’s Theorem, we get, i
Yrea(I=5%) + "Cpy,, (= 2x) - 2°CyYy = Yya1x = "Cyy, =m?y,
= (1 -xz)y,,+z - 2nxy,.+| ~n(n-~ l)y,; T Xy =Ny, mzyn =0
= 0=2) = Qr+ Dy, = (02 +m)y, =0 )

From (3) (4), (5) and (6) we have,

yO0)=e2i »(0) = —me2;y0)=mle2; y,,,(0)=(n?+m2)y,(0) be o (T)
Putting n = 1, 2,'3, ... in (M) we get,

3O =2 + M)y, () =~ &7 m(m? +1);
¥4(0) = (22 + m?)y,(0) = e?mz(mz +22);

o
¥50) = (3% + m?)y;(0) =~ e 2 m(m? + 3%)
In. general, :
.’"_” .
Y, (0= €2m*(m? +2%) . (m® +(n=2)?) if niseven;
n m ;

—e2mm? +1%) ..(m* + (n - 2?) noddinzl
Calculus /2018 1 3
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s Example-3 : : L ; Putting n = 1, 2, 3, ... in (12) to get, _
2 _p2 -
I y=(x'- &+ x?)", then find y, 0). ECEEYEREITEY 2011 [ 70 =2 m©) RPN it D)
St o : D : . 4 2 4
Soln, : . :
o . (m* =22)y,(0) _ m? 2.2
Here y=[x~ ,/4+x2]'" .................... ® : y4(0)=—-——‘1ﬁ~—) = —4—(— )" 9’—42—2
By differentiating with respect to x, we get, ' : 2
: , v 0= =330 _ m (m? —12) (m? - 3%)
2% ; ¥s( )———4—-— = e (=)
v = mx=fas -t $ 2 4 4
2;;4 + x?
. ‘ . , mmm =28 (m2-(n-2% .
— , o (-2) e 7 7 if n is even;
“\m-1| NF X~ . $ In general, y,(0)=
=m(x~ 4+x2)m1 N~ " ; gt y On 212 2 (92 .
¥ v R il N ek G Y0 RO
‘ : 2 4 4 ,
__m@&- Ja+ 22 _‘ ' . m  Example-4 :
A+ x : Let y=(x? ~2)". Find the value of m such that
_ my ' (x* = 2)y, ., +2xy,,, ~n(n+ Dy, =0 SPU, April-2015; November-2010

JA+x : Soln, : -

Differentiating y with respect to x, we have,

= 44 x2y, ==my. | : e vnr vere vene wene (9) )= m(s? - 212
Squaring both the sides, . = (x2-2)y, =2mxy
(4 + x*)y} =m?y? = (x? = 2)y, +2xy, =2m(xy, + y)
which, on differemiation' ' given, . = -2y, + 2(1 - '_”)"fy', ~2my=0
(44 X202y, + 202 =m22yy, = (44 x2)y, + Xy =Y e e e e e (10) Hence, by. applying Leibniz’s Theorem, we get

(x? =2)y,.a "C,zxyn” +"Cy2y, + 201 = m)(xy, ., +ny,)=2my, =0
= (X2 =2y, + 200y, +n(n =Dy, + 21 = m)(xp,,, +ny,) - 2my, =\0
= (2 =y, .t n—m+D2xy,, +(n® = 2mn+n-2m)y, =0

By Leibniz’s Theorem, we get,
yn+2(4 +x2) + "Cl}’n+l(zx) + 2nC2yn + yn+lx + "C‘y" = mzyn

= v(4+x2)y,,',,2+2nxy,|+,+n(n—1)y,'+xy,,+,+ny,,—m_’y,,=0 ' = -y, +-m+D2xy,,, +n-2m)(n+1y, =0
= (4 + xz)y w2t @nADxy,,, + (n?=mPy, =0 an Comparing the coefficients of the last equation with the given equation, we find that
From (8), (9), (10) and (11) we have, o . m=n.
y©)=(-2)"; a  Example-§ :
YO m For y = sin(2x - 3) + cos (5x + 1) find y,.
=-m X2 =22, ‘
O =-m 5 2 ( oy
. 2 0 mz m i:x i = ZZE
',3’2(0)=—'—m i( ')""T.("-z) ; _ y, = 27sm(2x—3+7)+57cos(5x+l+ 5
.(mz - n?)y,(0) { = —27cos (2x —3) +57sin Sx +1)
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m  Example-6 :

For y=¢* —log (Tx —5), find y;.

Soln, :

)’3 = 33e3x —
= 3He3x —

= 33e3x —

m  Example-7

D' E-n7
(1x - 5)°
-2 27
T (Ix - 5)
2.7
(7x - 5)*

If y=e?*sin5x, then find y,.

Soln, :

4
Je = L/Zz +52] e sin (5J|r+4tan'l (%j]
= 2,28 of -1 S
= (29)%e** sin [5x+4tan [Eﬂ

m  Example-8

If y=x7,find y,.

Soln, :

Compare with y=(ax+b)" wegeta=1,b=0m=7.
We know that y, =m(m—1).... (m-n+1)a" (ax+by"="
7.6-54.3.2.1.17 (x)7"7

Y =

Yy =

7 x°
7.

m  Example-9 :

If y = cos3x then find y,.

Sol“. :

. y

Ya

3%cos (Sx +4 E]
2

3%cos (3x + 2m)

3%cos3x

SPuU, April-2015

SPU, September-2014

SPU, September-2014

SPU, November-2013

4
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Hyperbolic Functions,
m Example-10 :
Find y, if y = xsinx.
Soln,
y = x - sinx
Let u = sinx, v = x by Leibnif’s thorem,
Yo = UV + N Uy V) + uC2u,,_’2v2 + ..t Uy,
. nm . (n-D=n
y, =sin|x+— [x+n-sin{x+-—7—
2 2
[ MULTIPLE CHOICE QUESTIONS |
s Fill in the Blanks :
1. If y=(ax+5b)! then y, = .
- 1)'nla" =D'nla"
@ (@ ® o
-D"a" nla®
(c) ———r —_—
(ax + b)*+! @ (ax + b)™
2. Ify=Iloglax + b) then y, = ____ .,
(-D"nla =D*""'n-1!a"
Q) ———— AN LA L
() (ax_‘_b n+t (b) (ax+b)"
(=D"nl a” (-D*nla"
(c) ———— —
(azx + by @ “ax by
3. Ify=a™ then y, = .
(a) m"loga" (b) m"loga"a™
(c) m"(loga)"a™ ) mram™
4. Ify=e™ then y, = .
(@) ¢m ®) mem
(©) pmem () mrem
5. Ify = cos(ax + b) then y, = . .

SPPU, November-2013

(a) c;"cos(ax+b+-’—?)

(¢) a"sin (ax+b+n7n)

() a"cos (ax + b)

(d) cos(ax + b + nr)
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6. Ify=sin (ax +b) then. y, = ___ - .
(@ asin (ax +b) 7 ® asin (ax+b+n7n)
o nm nm
() a"s1n(ax+—5—) ) sin(ax+b+—2—]
7. Ify = (ax + byn then y, = .
(a) rha’(ax + b)’;"z _ - (b) m (m = Da?(ax + bym-!
| (c). m (m — 1)a?(ax + byn-2 : (1) m? (ax + bym-2
8. Ify=(ax+bythen'y, =~ _
‘ ' ]
(@) m!a*(ax +bym-2 (b) '—;—"-.az(ax +bym-?
() m?a? (ax + b)m-2 - (d) (m _.2)! a® (ax +b)"-?
9. Ify = e cos (bx + b) then y, =
(@) rte“cos(bx+c+ng) . . . (b) r*'2e™ cos(bx + ¢ + n¢)
. ' n,ux ﬂ
(©) rre® cos(bx + o) ' (d) "e*cos (bx te+s )
10. y = e® cosbx then y, = .
@ riescosbx+c) () ries cos(bx +nd)
(c) re™ cos(bx + ¢ + no) (d) e cos (bx + nd)
11. kC(r—l) + kCr = —
(@) **Oc,_, . o (b) “C,.y
(© g, s (d) *C,
12. If y=emo'x then 1-x* =
| (@) my ®) my
{ '
© -y @ - my

- 15.

e T I TR

13.

14,

16.

17.

18.

19.

If y =emo'x then ylz =__ .

m?y? m?y?
(a) P ’ (b ¥ -1

mly? my?
(c) 41 (d) 1—-x?
If y=[x—4+x*}", then g5 x* Ntmy =
@ 1 ®) 0
© @ 2
If x=cos [l log y], then y(0) = ____.

m
(a) e™" (b) ~me?
© e7 @0 .
If x=cos[l logy], then y(0) = ___ .
m

(a) emT (b) meT
(C) — me™™ (d) _meT
If y=[x~Jd+x?}", then (d+x?)y} =
@ my? (b) my?
() m?y @0
If y:[x—"4+ lems then .Y(o) pee— ‘
(a) gm ®) =27
© @ 2o

If y =ix -—-J4+ XZ]") then yl(o) [ —
L
@ 7 2" ®) =h7 52
m n
@ =5 " @ -32
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20. If y=(x2-2)", then (x*-2)y, = . 27. The nth derivative of the function ¢3*cosdx is = _____ _

. = )  E ; .
. i ' a4
(a) 2my (b) mxy i (@) T"e¥* cosdx (b) 5"e* cos (435 +ntan”! '3‘)
(c) 2mx (d) 2mxy } o
. (c) €¥*cos [4x+n£) (d) None of the above
21. The nth derivative of y = sinx is = ____ 2
P ——
ANSWERS
(a) sin[2x+§] (b) cos[x.,.ﬁ) _ o S asd .
2 1. (), 2. (b), 3. (©, 4. (@), 5. (@, . 6 (b), 7. (©), 8. (@),
- 9. (a), 10. (b), 1L (c), 12, (d), 13. (a), 4. (b), 15 (c), 16. (d),
© sin (x+ngj (@ None of the above e 1Be, 1.0 2@ 2@ 2 )
) i 23. (b), 24, (b), 25, (a), 26. (c), 27. (b).
22. The nth derivative of cos (2x + 3) is =
— | | SHORT QUESTIONS
. T T ’
(a) sin [Zx +3+ 5) (b) cos ( 2x+3+n-2—) 1. Obtain the nth derivative of the following functions :
1 1
(@ (b)
() sin (Zx +3+n F—) (d) None of above 4x+3 3x~5
2 . ©) BGx+4)", meN (d) Gx-D", meN
23. The 10th derivative of a0t js = (€) log2x + 5) ®) 5%
1x
@) 109(log10) aos (®) 10%(og10y¢ aios (g) e (h) cos(3x + 5)
(i) sin(2x - 3) () e*sin(dx -5)
(©) 1010410+ (d) None of the above (k) e**cos(x +4)
24. For the function u, v, Leibniz’s rule gives nth derivative of |EXERCISEI
(a) f:_ ) uv 1. Obtain the nth derivative of the following functions
(a) e**sinxcos?2yx (b) cos*x
© Juv du+v (¢) sin?xsin2x (d) cosx cos2x cos3x
25. nth derivative of y = logx is ) (&) e**sin’x (f) sin2x sin3x
="' — 1)1 : 1 (8) e +sin2xsin3x (h) cos2x cos3x cosdx
(a) ——= (b) = el (i) sin®xcos®x () (tan~!x)?
‘ . . 2x 1-x?
(— 1)"(}1,— l)' (=17 Y (k) sin ! ( 2 ) (l) COS“l
(© — (d) C'n-Dt )x(", ) !' I+x 1+ x?
26. The .nth derivative of gmx js = ' (m) tan"( 2"2) Vi+a? -1
— 1

" (a) a™(loga)am™

(€) m"(loga)"am™

(b) am(loga)manu'
(d) m"(loga)a™

N e

- X

(n) tan! (
: x

(o) tan"(—x-)
la

Calculus /2018 / 4

|



26

Caleulus - gymerbolic Functions, Higher Order Derivatives, Indeterminate Forms, Conic Sections 27

10.

11.

12.
13.
14.

15

16.

17.
18.

' Find nth derivative of the following functions :.

(@) x4+ ® x’cosx

(e) x"logx. _ (d) (2x +3)%e*
© (x+3'sin3x ® (x* +9)sinx
(g) xsinx | (h) x2sinx

(i) xcosx 0] 2sinx cosx

If y=sin(nsin~'x), then prove that (1-x2)y,,, ~2n+ Dxy,,, — (n* - m?)y, =0,
Also find ‘y,(0).

If x = sinmt, y = cosmt, then show that (1- x?)y,,, = 2n+ Dxy,,, = (n® - m?)y, =0,
. AW
If fix) = tanx, then prove that f(0)~ "C,f~P(0) + "C, f*"~9(0) - ....=sin >

If y=(x+ h_xz m . then find ¥,0).

If x=sin (l‘ﬂ] then prove that (1~ x%)y,,, —Q2n+Dxy,,; ~(n® = a*)y, =0. Also’

a
find y,(0).

If y=(sin"!x)?, then prové that (1~ x2)y,,, ~(n+Dxy,,, —ny, =0.

If y=ew's, then prove that (1+x?)y,., + @ +Dx -1y, +n(n+1)y,=0.
If y = cos (logx), then prove that, x%y,., +(2n+Dxy,,, +(n* +1)y, =0.

. n
I cos-! ['Z‘]= log [E) , then prove that x%y,,, +(2n + Dy, +20%, =0.
n

If ylm 4 y-Um =2x, then prove that (2 = DYyuy + @n+ Dxy, .y + (02 =mP)y, =0.

If y = acos(logx) + bsin(logx), then prove that x2y,,, + (21 + D&y, +(n* + 1Dy, =0.

If y=(sinh-'x)?, then prove that (1+x%)y,s+ @0+ Dxy, .+ n’y, =0. Also find

9.0 _

If . x =cosh™! [M), then prove that (x? + 1)y, +@n+ Dxypyy + (n* —m?)y, =0
m

I y=log(x +y1+x2), then find y,(0).

If y=[log(x +1’1 +x2)]2, then find y,(0).
If y=cos(msin™'x), then find y,(0).

| INDETERMINATE -FORMS |

m Introduction :

We have developed the algebra of limits and continuous functions in previous chapters.

* Let f, g be two suitably defined functions and ¢ stand for an a]gebralc operatlon This means

- ¢ is one of the +, —, -, +. Then we have, :
Jm o (Fop = [ fim f“)] ( e, g""]- o )

Stated differently we say that the operation of taking limit is distributive over 9. If we

~ observe the results carefully, we can see that they are conclusive only with certain conditions.

In general, the validity of the above relation depends upon the situation.

: 1
Example-1 : Define f: (0, «) — R by f(x)=; and let ¢ = f.

Then hmO () - g() = llmo(f(x) f(x)) = ;1@0 =0.

However, . hmof( ) = o0 8(x) = e = o,

As we know, e — = cannot be defined.

E in the following proposition contains some deleted neighbourhood of a, The proportion

- asserts, that limit may not exist in case of quotients of functions.

“®  Proposition-1 :

Let f, g : E — R be two functions. Assume that

n x]i)n flx) exists and is a nonzero real number. |
@ M ogw =o.
Then prove that xlf;a {;(x; cannot be a finite number.
Proof :
, , i (0
Suppose, if possible, that xlT;a i—(—\; =le R
lim = Hm gy lim SO 0 - ! = 0, a contradiction.
Then fx) = r—a x> a g

Thus 1M f® cannot be a finite number.
x> a g(x)
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; / . ; ‘ ; x) .,
Calculy im f® _ lim f® . lim SO lim SO .
: lim JY) _ lim J A% h the limits, ~ )
z . i  Thea [T glx) X a g'(x) » When bot x=a gy X4 g(x)
We devote this chapter to tackle such odd situations, where the previously dcvel.opez ) ‘
i i i indeterminate form. What is ¢ proof :
ical tools fail. That is, we deal here with the so called in : ' . .
'Cl?iist;c:ninoa‘:esfonn ? There are various types of such forms. This forms occur while computir, By applying the Mean Value Theorem to f and g, we have, 8}, 6; € (0, 1) such tha ‘
ln ' « . . -
limits, there are some sort of conflicting forces at a certain point. A comfn011‘ example of th, Fla+h) - f@a) —Flas B gla+h) - g(a) ¢ o).
occurs when you have a ratio of two terms, each of which is getting arbitrarily close to zer. '—‘h——— = NON -‘—"““h —
for examle Continuity of f and g at a gives fla) = xh—“)]a fx) =0, gla) = x]f)‘ag(x) = 0.
lim sinx 4
x20 Hence, |
2,
Here, as x goes to zero, the numerator is getting arbitrarily small, which would normall; fla+h) _ fa+h)-f(a) _ fla+6h)
) ’ . . . = = 7 .
mean that the whole fraction is getting arbitrarily small; but in this case, the denominator ; gla+h)  gla+h)-gla) ~ g'(a+0,h)

getting arbitrarily small, too, which would normally mean that the whole fraction is gettin;

. . Now taking A — 0 in this expression, we get,
arbitrarily big ~ one force tries to make the fraction big, and the other tries to make it smal

0 lim SO _ im f@th) gy f@48R) om0
FASZ = - = k
The crux of the discussion is : “We shall try to make sense out of 5 Who wins ? That X=2agx) h—=0ga+h) - 20 a8k T X a gy

what L’Hospital’s rule is designed to answer. The “rule” goes by the name of Guillaum,.Theorem'2
Francois Antoine deo L'Hospital, Marquis de Sainte — Mesme (1651 - 1704), but it was actuall
discovered by John Bernoulli. It is by this rule that Marquis de L'Hopital is best known todu
but his greatest contribution to mathematics may have been as the author of the very fir differentiable functions and a € R. Suppose
calculus textbook. Though later editions bore his name, the book first appeared anonymousl

0 . .
(Generalized L'Hospitals’ rule for 0 form). Let f and g be sufficiently many times

in 1696, under somewhat dauting title “Analyse des infiniment petits pour Iintelligence de xllTa 0 = xlﬂ;na £7( =0, forall r = 01,2 ., n-1
lignes courvbes”, (“Analysis of the infinitely small, for the study of curves”). The book w: . ‘
based on (some say stolen from !) notes of John Bernoulli who had learned and molded t - Then lim &2 = lim FARE)) when both the limits lim FAME)) and lim i(i)
calculus after many years of correspondence with Gottfried Leibniz, the man who, togeth: T A gx) X a gy’ ¥ a gy X=a e(x)
with Isaac Newton, is credited with the discovery of calculus. exist.

Remark : l.

] 9— form :

0 .
) L’Hospital's rule and Generalized L’Hospital’s rule for 0 form also hold when a = + o,
Recall that Proposition (1), does not conclude the existence of lim f\x)’ whe: L 1 . .
X=a o(x) This can be proved by substituting x = — and then applying the corresponding L'Hospitals’
. y ,
xliTa g(x) = 0. Even if it exists, it may not be easier to compute the limit. The followir: rules for limits as y — 0.

theorem and results in the sequel show a computing scheme for such a limit, if it exists »
Theorem-1 :

A word of warning :

The part of the hypothesis of L'Hospital’s Rulc that is most invitable is the existence of
’ -(n)
£ 4 tim £® ( lim )

lim 7
=4 g(x) A (¢

0 :
(L’Hospital’s rule for 6 form). Let f and g be two differentiable functions and g € : .
. x—a g"(x) for sgme n in the generalized rule].

the limits,
Suppose X

lim _ lim N
x—af® =, 800 =0

BRI G che LRI e oo ORI SR e e
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x—a (x)

Tim f(&)

nonexistence of tﬁe‘liinit x> g ; . This is untrue. There are examples makes it clear where

the former limit exnsts but ‘the latter does not. On the other hand there are examples
where the former limit _does not ex:st. but the later does exist. It is this areas on, why we are
using the phrase “when both the limits exist” (either finite or infinite) in the statements of
L'Hospital’s Rule (see Theorem—l) The conditions found usually in the statements of
L’Hospital’s Rule are -

(1) g’(x) is non-zero in some deleted neighbourhood of a.

2) lim -f-,—(f—)- =L, wHere besides taking real values, L is allowed to take the values
x4 g'(x)
* oo also.

Many a times, it is easy to compute the limit, }_‘l)"a fg ; dxrectly using the algebraic tools

or some series representing the underlying functions instead of using L'Hospital’s rule. In this
conneetibn, the following well-known series expansions of functions will become handy.

3 s'" o 3 s

X . x X
(1) sinx= x—3!- 5! @) smhx=x+—5!-+§+...
x* ‘,x'? . _ R R
(2) cosx= 1‘5 -H- : (5) coshx—l+a+—;‘—!+...
" k] . ' [ R
® tanx = x+5-+%x o (6)_ et -1+x+—2—'—+;+

‘ : 3
oy X 17 T
. —_—— — < -,
(7 _tanhx x- 3 +2x » 31”x + o | x| *

(8)-(I-—x)"=1+x+x2+x3+..., [x]<1, .

(- ©) (+x7"=l-x+x -2+, |xI<]

3
(10) log(]+x) x—7+—3—-—. . | xl<1.

Here the base for. the logarithm function is e. Let us also note that logl = 0, loge = L.

Also, we have the convention that log0 = = -, logee = oo,

One is'led . astray to-believe: that the nonexistence. of the -limit, 1M f( X) implies the .

t

lim sin(x? - 4)

Example-1 : Evalupate x>2 5=2

Solution :

As can be seen, the given limit is in o form so by taking the derivatives,

lim sin(x’=4) _ lim
X2 y.2 Tx—2

lim €& +log(l-x)- 1

le-2 : Ev .
Example-2 : Evaluate =0 nx = x

Solution :

2xcos (x’ —4) =4,

0 ;
Evaluating the function at x = 0 we get the o form. Hence by the L'Hospital’s rule, we get

lim e +log(1—-x)-1
x=0 tanx — x

lim

x0 gec2 x—1

lim €d-0-1
%0 (1-x) tan’x

Clim €0=-®-1  jim X
T x=0 (1-x)x x—0 an?yx
| = lim fl-xn-1 . (again 9 from)
x>0 xz —x3 0

lim € —ée'x—¢€
20 oy 3y

_ lim :{.M (again 9 from)
Tx-0 2x-3x 0

lim —¢ te (I-x)+e" (=1
=. x—0 2 - 6x
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|

~2e" +e* (1-x)
2-6x

. lim
T x>0

-2¢° +e°1-0) -1
2-6:0 2

As noted earlier, this limit can be computed using a series also.

lim € +log(l-x)—1

x—0 tanx — x
2 3 2 3
Trx+ e ]2 2 o1
_ lim 21 3! 2 3
T x>0 3
X s
X+ =X+ -
Y N T RS O SR )
_ lim 6 3 24 4
“x-0 2
A
3 15
1 1 1 1
——— e X —— |+
_ lim 6 3 24 4
T x>0 1 2 ,
—+t—x"+
3 15
_1
-6 _ 1
S 177
3
. i * —2bcosx + 3ce™*
Example-3 : Find g, b, ¢ so that _1m % =
x—=0 xsinx 2
Solution :

Since the denominator of the expression becomes zero at x = 0,in order to get a finite
limit, numerator must also tend to zero as x — 0. As a result,
lim

x—0 @€ —2bcosx+3ce™ =0 = a-2b+3=0. o (1)

L - - 0
Wlth this condition, our limit reduces to —

0 form. Hence by L’Hospital’s rule,

we get,

L R US—

Hyperbolic Functions, Higher Order Derivatives, Indeterminate Forms, Conic Sections 33 .

lim ae¢" +2bsinx - 3ce™*

lim ae’ —2bcosx + 3ce”*
x—0 sinx + xCosx

x=>0 xsinx
where again the denominator is zero. So, to get the finite limit, we must have the numerator
' tending to 0 as x — 0. As a result,

4-3e=0 . V)

Again with this condition, .our limit reduces to % form. Hence by L'Hospital’s rule, we get,

ae* + 2bsinx — 3ce””
sinx + Xcosx

lim a€’ +2bcosx —3ce””
~ x—0 cosx - xsinx +cosx

lim
x=0

2 =

Here the denominator tends to 2 as x = 0. So, to get 2 as the answer, the numerator
must tend to 4 as x — 0. That is,

a+2b+3c=4 ' - (3)
On addition of (1) and (3) we get,
a+ 3 =2

This, on addition with (2) gives,

and b = 1.

a=1¢=

[

(.-}
[ — form :
- -]

Theorem-1 : (L'Hospital’s rule for 2 form). Let f and g be two differentiable functions.

Suppose
lim _ lim - ' '
x—-)af(x)_x-—)ag(x)_ ’ |
im f&®) _ lim SO s, Im L@ 4 him SO
Then , e) x> a g’ when both the limits, '~ % ad ' -g(_x) exist.

s

Proof :

v 0 I3 . i o
First we rewrite the given expression to transform — form into % form. Thus,

(-]

1

im £ _ lim £
x4 g(x) —x->a_1_

f(

(9 form)
0

Caleulus 12018/ §
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fud 46] Remark . ' ‘
N -
; . X-a . ) . . oo
a & % ~The generalized L'Hospital’s rule form > can be obtain as in the -g- form. Also, bott
X ) oo
o : the above theorem and its general form hold when we take a = % eo,
E PR . 2 .
= lim g§&® % lim PAC)] » Example-1 :
T x-a f(x\ x=>al g(x) - (D) - 4 .
o f( ) . Can we apply L'Hospital’s Rule to assert the existence of th -m.
i ion : : = oox
Now suppose _ _L"a o : 1. The proof is now divided into different cases for different Solution : :
‘ The expression is in the for — .
- :values of /. e
' , On the other hand, we note that lim -&2 = lim (I — cosx), which does not exist
; : lim &) X3 g(x)  x—eo ’
:Case-I : [is a nonzero real number. By ( 1), we get, [ = r—>a - Hence the result follow. . 2k+Dnr
. f@® because we know that 1 — cosx =1 for x = ~———" and 1 — cosx = 0 for x = 2nm. However,
‘CaseII : 1:=.0. Hence we have | = .“m @ 1. That is , . i , i i '
, s " xX—=>a . ’ lim . I@ = lim Xx-sinx _ iy _sinx ) lim Sinx
. g(x) X g T xoe T T xe 1 ~ -l.Notet.hatx_)w-—x——Obecause

lim L)+ 800 .
8k T

;___-}.a

which is m — form w1th 2 fmxt«, nonzero hmn Hence as in the Case-I above,
-]

1= lim f (x)+g(x) lim f (x) i
x—)a g(x) T x=a g(x)
He nce, xlina iz z 0 whlch proves the result,
. Case-III:l :,-;oo,, I_-Ience xlﬁ‘é J; ((j:)) = qo Thus we have, .
- lim E@
' :.x -y f(x)
whlch xs m -_ form w1th hmlt 0. So, by Case-II above, .
“lim: g(x) = tm g Xx) (x). »
J""af(«\f) x'-'-"af(x)if
Honee. ~ lim LW _ Chige f®)
Hence,  xsa'gm Txma g

* This.;completes the proof.

1
sinx is a bounded function and " — 0, as x — oo, Thus the L’Hospital's rule fails here. ‘This

lim £ &
e g(x)

The following is a typically constructed example which asserts that the assumption that

happens because x does not make any sense in this case.

xlina f—((—; exists, cannot be dropped from the hypothesis of L'Hospital's Rule.

Example-2 :

lim —X_ o
x__)wxeslnx

Can we apply L'Hospital’s Rule to assert the existence of

Solution : o .
The answer is “no”. In fact, as one can see, eSin* goes on taking the values et! and 1

hes oo. Thus 1M —— _  lim _
repeatedly as x approaches oo, X =3 00 xgthx X =300 gt

cannot exist. Hoquer,

) . N .
observe that the limit under discussion attains — form. So, one is tempted to apply L’Hospital’s
o0 .

S

Rule by taking fix) = x and g(x) = xeSi"*. Now note that,

1
im f® _ tm 1 tim 1
xl-l-':‘oo T X ¢ 4 xcosxe™ X o0 M (14 xcosx)
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because esi™* is a bounded function and | | + xcosx| — o, as x —> eo, Thus in this situation

lim _f_'_(x_) exists but lim £ does not exist. This shows that the assumption about
x> g'(x) X g(x)

lim M in L'Hospital’s Rule is crucial and cannot be dropped.

the existence of the limit x =% g(x)

Jixample-3 :

lim log (log(l - 3x%))

Evaluate [, log(log(cos2x))

Solution :

oo
This expression takes — form when x — 0.
[--]

1 - 6x
im log (log(1-3x%)  pm log(l-3x%) (1 - 3x? }
x=>0 log(log(cos2x)) x>0 1 —2sin2x
' log(cos2x) | cos2x

Hm 1 x log(cos2x) xzx 2x
x>0 1-3x" log(1-3x*) 2 tan2x

3 lim log(cost) Y form
2 x>0 log(l - 3x%) 0

3 fim — 2tan2x

-

T 2x—-0 -6x
1-3x°
=§ lim %tan2xx(l 3w
2x——)03 2x X
= 1.

Example-4 :

lim (log2x)"

Evaluate ———, where m, n € N
x
Solution :
lim (log2x)" Eo oorm
x>0 - oo

Hyperbolic Functions, Higher Otdér Derivatives,

Indeterminate Forms, Conic Sections . 37

(D

(2

i (log2x)" ™!

lim
T x>0 _ ™
_ lim M = orm:
T x50 ™ o0 _

lim (=1 (og2x)"~*
“x-0 (-m)2 X"

oo . »
which is again in — form. So, repeating this process, finally we get,
. oo . '

lim  n(n =1 (log2x)" 2
x—0 (—m)2 X"

_ i An=D 3201
= X = 0 (_ m)n x-m

lim _™M
x—0 (-m)"

=0,

[OTHER FORMS (= — =, 0 x o, 01, 1= AND o9 |
Let f and g be two differentiable functions.

Suppose xlif)“ J = xh—T 28® = . Then xlf‘)‘ (SO — () is called the
indeterminate form of o — oo type. In this case, we can write
RN ‘
lim o lim 8 _f(&) '
x o g S —gx) = T, 1 '
f(x) g(x)
... 0 .
which is in a 6 form. We shall also see that it is convenient to reduce the limit expression
to — form by taking the reciprocals of numerator and denominator of the main fraction
and then apply the L Hoispital’s' rule.
Suppose xl_‘f)‘ o f® =0 and xl_‘f)’ g 80 = e ‘Then the x“_')“ o FO) 800 is called the

indeterminate form of 0 x o type.
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In this case, we can write, ’ ‘ . 4 :
. ' O. _  lim 4sec’xtanx + 4tanx sec"x+4tan3xsec2x
: . + x>0 :
g I g = Jim S@ (5 form] *= | 24
_ I |im tanx 4 2 2
2(x) - =Ex—+OT(25eC X+ tan” x sec’ x)
lim - lim 8(x) il == x2
or x—>af® e = T ==, — form S
- f =L
lim 3
: = im . " AE(X) y i 1 0 1o ool
(3) Let us now consider [ x> a S(x)*9. It may take different forms like 00, 1% of ool Algebraic Method :
In such-a sifuation, first we take log on both the sides to get logl= xli" a &) log(f(x)). lim [_1_ _ cotzx]
2
This form is now standard. After computations we take the exponent on both the sides *—0{ 2 2
to obtain I . . 1 1
= lim | 2 ___° -
Example-1 : . x—=0 (sz 2tan’ x]
2 2
. 2 lim tan“x — x
lim |1 _cot’x = arEcx
Evaluate =0 (2} 3 ) ‘ x>0 2x* tanx
2 2 2
. - . lim tan"x—x X
Solution : . =
! =0 gl tan® x
2 .
lim [_1 _cot’x (oo — oo form) : : lim tan’x-—x’
x=>0{242 2 x>0 g4
r 2
N N O S : . x+£+... -x?
x=0{2x* 2tan’x lim L 3
2 2 T x-0 2xt
lim fan x-x )
" x>0 2x tan’x . x2+2x—4+%6+ ]—xz
2 2 2 : _ lim L .
= lim lamx-x o X “ x>0 2x°
x>0 2y tan® x .
; 2 o x 2
2y —x? : : w224+ |-x
T A (Qform lm x[?‘ 39 J
x=0" 24 0 ! x50 2x*
2 5 0
. lim 2tanxsec x-2x [‘ form =1 lim 2 + terms containing powers of xJ
S x-0 8x° 0 5 x—0|3
lim sec? x +2tan? x sec?» — 1 ‘ (9 form _1
x0T 124 >
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Example-2 :
i Smx
Evaluate xli“ a (a — x) tan (—2—;)

Solution :

xl.ii)na (a - x)tan (%’;—f) (0 - o form)
. lim a—-x 0 form
T x—a (513) 0
cot| —
2a

fim -l 2

T x-a 2(51“] 5w
— cosec =

_2_a
St

Example-3 :

lim .- a—x 2 2
Evaluate sin cosec (ya“ —x")
x—a 3a+x

 Solution :
lim ;.- a—x —
sin cosec (yJa© -x
x—a [ 3a + x ] ( )

» ]| a—Xx
sin

=x—)a K i
sm(m),

=l a-—Xx
sin
lim [ 3a+x] —x m |

x>a .
a-x 3a+x g \/az_xz \/az—xz
3a+x

lim [: 1

x2aV3a+x Ja-x Jatx

_ lim

1
T xoa Bavsfarx

1
" Jaa2a

1
2V2a’

Example-4 :
1
Evaluate xh_‘_)“ (44 x2)los@-29

Solution :

1
Let y = xlgl (4= 4x2)2"29 (00 form). Then

lim 1 )
lm 1 44l (0 (- o) form
ey %=1 1og (2 - 2x) 0g ( ) (0 - (- =) form)

. 442 -
lim 108 (=47 ) (—-— foxm)

T xol log (2 - 2x) 0o
- 8x
_ lim 4 —4x*
Tx=1 -2
2-2x
- lim 4x _
x -1 2+2x
Thus logy =1
= y =el=e
Example-5 :
S
lim tanx \3x2
Evaluate x50 [_x_ ) )

Solution :

5
. tanx \o7
Let v = xllno[ ;xJJ (1= form). Then

Caleulus /2018 /6
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logy = xlEPo 32 log (Eaﬂ) [9 form) s (42
: x _ i X
x . 0 = xh—')nO 3 [T + terms containing higher powers of xJ
. Jim i[_x ssec’ s~ an m S -
X0 6x]|tanx x? : = xli)no 5 [-3— + terms containing powers of x} -
=35 lim xsec’x-tanx 0 5 '
6x—0" 3 | g form =9
. : 2 5
- gxl:no 2xsec” x tanx +2sec2x— sectx . =. y=é.
3x
=3 lim 2sec’x tanx S Example-6 :
X230 T =3 ' :
6 3 x 9 Evaluate xl-lino (cotx)sin2x,
: 5
Thgs» logy = 5 -Solution :
5 . : i ;
= y=é Let y = xllTO (cotx)"™2* (e<0 form). Then
Algebrai . j . )
gebraic Method : logy = xl-l-TO sin2x log (cotx)
5 : ' :
Let y = lim [fanx k2 . _ " lim log(cotx) e
T x> 0( x (1= form). Then . =y = form
< lim .S tan x : ‘
logy = Hm _o j,,) 0% — cosec’x
r= 003yt ’ x ' ' lim cotx
' \ ~ x—0 - 2cosec 2x cot2x
i [-X+£+£x5+~ : ! ' |
= lim . ; 2
= x5037 log 3 .15 _ _ lim cosec”x
x ‘ x>0 2cotx cosec 2x cot2x
s , : lim Sin2xtanx tan2x
_ i : = in2
_x—?)]O':;—zk’g 1+£3--~-2—,\:4+ } x—0 2sin” x
= limotanZX =0
im 5 [ (£ 2 | .
=x"’0§x_210g 1+(?+Ex4+...]:| -_ Thus logy =0
- ‘l = y=€a=1

_ lim $ x* 2 i (x> 2 , 3 ; The following example evaluates the limit at the point where th.e function is not deﬁm?d.
w3 2 +Ex T ] Fee Thus actually, we need the function to be defined in a deleted neighbourhood of the point

. iunder consideration.
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Example-7 :

lim _r
Evaluate x> /2" (x > jtanx.

Solution :

‘ T
It-is clear that X—-2—] — 0 and tan x — o as x — /2", So this is 0 - e form. Using .

L’Hoispital’s rule,

T
x-—_
lim _r = lim 2 0
x—1/2” ,(x 2}3“ T x> w/27 cotx (0 form
= im _ 1 _ lim  _n2, _
X 1/27 (~cosec’tx) x> WI2T simx =1

1. Evaluate the following :

lim *—sinx
M x—=0"

tan® x

i log(1 - x?)
2 lm
@ x =0 log(cosx)

(3 lim € —e™ ~2log(l+x)
x—0 xsinx
(4) lim esinx —1- xz

=0 7 o 1)

(5) lim 2sinmx +7(x? ~ 1y’
x-1 (x2 _ 1)2

© lim mfx=2at -2
e T
lim € +e " +2cosx—4

x—0 o

(N

Jdim € —1+log(l+ x)
® By —==%
X
lim X*—tanx
x>0

&)

3
lim log(l+x7)
U0 150 ~ gty
lim tanxtan™ x — x2
x=0 &

an

. il

1gy lim X=sin”'x

(12) x>0 xsin?y

(13 lim sectx-2unx
X /4 1+ cosdx

e* +sinx—1

lim
a4 log(1 + x)

x>0

3

. X

. sSiIx - x + —

(sy lim 7 " 6

x—0. P
li x! -a”
(16)x-l—r)na x_an

log;, . (cosx)

log x cos'_r
sin;( 2)

lim log(sin2x)
18 x =0 log(sinx)

a7 xlE?O

YT ST e =

a9 i,

lim tan(3mx)
x =12 gec(rx)

log,, . (tan 2x)

(20)

log(1+ &%)

log| x - I
lim 2

(22) x—=R/2 tanx

log(x ~ a)
- lim 2\ 75%
@3 x>a log(a® — a*)

lim log(sinx)
29 x50 cotx

2x secx
lim (tanx - ]

25) x 572

lim 1 1
(26)"")°[sinzi xzj

2N x‘li—TO %—-cotzx)
/
lim 1 - 1
28) x 52 x-2 log(x—l))
(2 1
lim —
@9, 51| F 20 x—l]
lim (®___ 7
(30) x__)o 4x 2x(e1l\'+l)J

: 1
lim -
G x5 [secx l—sinxJ

lim (1 _ log(l+x)
X

x>0 2

X
(33) hmO (cosec’x - —E-J
p

(32)

(34) l_r)noo (cosh™ x - log x)

3s) hm | log(1 - x)cot ( > )

(44) lim

+ X
cotx
)

(38) x‘_‘f,“w (,/x 1= %) log — 1

. | 1
(36) xl‘_’)no log [1

xlogx

(39) x“_f)“a = tan™ (a? - 2)
40y Im (g

@y jfim (cosx)”"

coshx +log(l-x)~1+x
(42) xlll-:lo x2 ’

lim (€ =1 3sinx — sin3x ¥
X0 y*sinx | cosx - cos3x

(43)

sin2x +2sin’ x - Zsinx
cosx — cos> x

x>0

" lim logx

X=poo where 7 is a constant

(45)

- ‘ o\
i tan x
(46) xlE)nO [T)

lim [ sinhx '
x—-)OK x

lim ,2_£J’""(%] i \

2
47

(48))3—)(1 a

(49)

lim (a* +b* +c* )
x=0 \ 3
(50) llmo (cosecx)lllogx

)lﬂl‘l X

(5 __) n/2 (cosecx

(52) hmo (1 + tanx)(:olx ,

. ll/x + 2|/x

L ]"

A

'
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. Find '
ind the values of_a,'b, so that x—=0

Find the yalugs of a, b f'(_')f.\‘wvhi‘ch =0 7
‘ xl-l—T‘asin'![’ a_x‘)coséc Wa® -2%).
. : x ' v ' '

Find. thé value of a "folr ‘w.liich \ x=a " 3

¢))] ,
: x-0 © .
@) - lim X(1-acosx)+bsinx L l
. X —)0 x3 . - 3
(3) lim asin®x + bcds(logx) .
X "')0 x4 . - 2 *

Calculus
. * ] lim - '
lim [x+1 , (57 (x=1)*! » ;
oo 121
_ \ 1752 :
. ) I 2(coshx - 1) I
(55) xl-l11)10 (cosx)°*** (58) xE)nO (sz ‘,
. " x cot(x - «) x -x
(56) lim (2 ——) 59) “lim g4 pyx2eist | €~
x>al®7, (59) x50 1+ 27" log(1 + x)
60 Iim Xn . L. .
(60) , o+ for a fixed positive integer .

{(61) xl_'_')“m (x-}- %)[log ['x + %J - long

. R . 2 .
(62) lim_[[sin2x+ 2sin’x ~ 2sinx 4 _1—cosx
x>0 cosx — cos? x cosx sin? x
lim _@sinx—bx+cx? +x° ) ‘
be finite. Also -

Find the values of 4, b, ¢ such that

x>0 2xlog(l + x) - 2x* + x*
determine the limit,

lim x(1+acosx)-bsinx _

x3

1.

lim sin3x+ax+bx*
xX->0 o

Find the values.of a, b for which

Find the values of’a; b for which xl.'_“;o M =

win o

x
lim asin®x +blog(cosx) -

Y-

* '

a+

lim sin2x+asing ,ogite. Hence find the limit

Find the values of g, b for which'
- lim sinx+-ax.+bx.3j =0

| CONIC SECTIONS |

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and
derive their standard equations. This curves are called conic section or conics.

LCONIC SECTIONS AND QUADRATIC EQUATIONS

We defined a circle as the set of points in a plane whose distance from some fixed center

point is a constant radius value. If the center is (k, k) and the radius is a, the standard equation
for the circle is (x-h?+ (y-k)? =q%. It is an example of a conic section, which are the

curves formed by cutting a double cone with a plane (Fig. 1); hence the name conic section.
We now describe parabolas, ellipses and hyperbolas as the graphs of quadratic equations
in the coordinate plane.

®  Parabolas :
Definition : Parabola, Focus, Directrix

A set that consists of all the points in a plane equidistant from a given fixed P°i“tb“‘1’d
a given fixed line in the plane is a parabola. The fixed point is the focus of the parabola.

The fixed line is the directrix.

Cirdie : plane perpendiculsr  Ellipse : plane
to cone axds obl

parailel
fo side of cone

Single line : plane Palr of intersecting . ...
tangent to cone {ines o
" i double cone.
Fig. 1 : The standard conic section (a) are the curves in wl:zch aogl::il: e‘:l“lt)sy t;) o the piane
Hyperbolas come in two parts, called branches. The point and lnzsnic i
through the cone’s vertex (b) are degenerate ¢

Point : plane through
cone vertex only
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If the focus F lies on the directrix L, the parabola is the line through F perpendicular |
to L. We consider this to be a degenerate case and assume henceforth that F does not lie onL. ¢

- A parabola has its simplest equation when its focus and directrix straddle one of the?
coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the p051t1‘ve :
Y-axis and that the directrix is the line y = - p (Fig. 2). In the notation of the figure, a point

P(x, y) lies on the parabola if and only if PF = PQ. From the distance formula,

PF = \(x-0)* + (y - p)?
=3 +(-p)?
PQ= \J(x-x) +(y - (-p))°

= Jy +p)

When equate these expressions,
square, and simplify, we, get

x2
y=2; or x*=4py. .. (1)

= apy

B
I
1S

I

i

TR AL YL

These equations reveal the parabola’s
symmetry about the y-axis. We call the y-
axis the axis of the parabola (short for
“axis of symmetry™).

If the parabola opens downward, with its focus at

then Equation (1) become
O
b

Fig. 3. We obtain similar equations for

parabolas opening to the right or to the left
Fig.4 and Table-1. '

and  x?=-4dpy

T e T I e —

Fig. 2 : The standard form of the

Q{x-p)

parabola x2=4py,p > 0

The point where a parabola cross its axis is the vertex. The vertex of the parabola .
x> =4py lies at the origin (Fig. 2). The positive number p is the parabola’s focal length.

Directrix y=p

(0, ~p) and its directrix the line y = P,

Vertex at origin

X?a-4py

Fig. 3 : The parabola x2 = - 4py, p>0

Focus (0,- p)

Table-1 : Standard-form equations for parabolas with vertices at the origin (» > 0)

Example-1 :

(@ ()

Fig. 4 : (a) The parabola y2 = 4px. (b) The parabola y? = - 4px

Find the focus and directrix of the parabola y? =10x.

Solution :

We find the value of p in the standard equation y_2 =4px,

4p = 10,

_10_5

4 2

SO

Then we find the focus and directrix for this value of p :

Focus :

Directrix :

m  Ellipses :

= (2
N

=-p or x-—é
2

Definitions : Ellipse, Foci

Equation Focus Directrix _Axis Opens
xt=4py . ©, p) y=-p y-axis Up
x*=—dpy ©, -p) y=p y-axis Down
y* =4px (p, 0) =-p " x-axis To the right
y? =—-4px ~p, 0 x=p x-axis To the left
L . y ‘
A 2 Directrix
oo Y= 4px y'=-dpx o
Vertex | \ Vertex
\\ Ff( ofos / x
0 0

An ellipse is the set of points in a plane whose distances from two fixed points in the

Calculus /201817

- plane have a constant sum. The two fixed points are the foci of the ellipse.
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The quickest way to construct an ¢llipse uses
the definition. Put a loop: of string around two tacks
F| and F,, pull the string taut with a pencil point P,
and move the pencil around to trace a closed curve.
(Fig. 5). The curve is an ellipse because the sum PF 1
+ PFp, being the length of the loop- minus the
distance between the tacks, remains constant. The
ellipse’s foci lie at F) and F,.

Definitions : Focal Axis, Center, Vertices :

. The line through the foci of an ellipse is the
ellipse’s focal axis. The point on the axis halfway
between the foci is the center. The point where the

P(x,y)

Fig. 5 : One way to draw an ellipse
uses two tacks and a loop of string
to guide the pencil

focal axis and ellipse cross are the ellipse’s vertices

(Fig. 6).

" Fig. 6 : Points on the focal axis of an ellipse

If the foci are Fj(~c, 0) and Fy(c, 0) (Fig. 7),
and PF) + PF, is denoted by 2a, then the coordinates
of a point P on the ellipse satisfy the equation

P(xy)

\/(x+0)2+)’2+\/(x—c)2+y2=2a. /// I
= Jx+e)P +y? =2a-4x - +yt Focus | "
= (x+c)+yr = [2a - ,(x —o+ P Falc 0)
= x*+2xc+ct+y?

= da® —dayf(x=cP +3 +x* <2xc+c? 4y
' ” Fig. 7 : The ellipse defined by the equation
= 4xc-4q = 4a\/(x ~-¢) +y? PF, + PF, = 2a is the graph of the equation

' 2q2 2/p2) = 1, where b2 = a® - ¢2.
= (xc-a?)? =a*[(x-c) +y?) (x2/a?) + (y2/6%) = 1, W
= %’ - 2xca’ + a* = a’x* - 2.¢ca® + a’c® + a*y?
= a¥a? - c?) =21 (a® ~c*) +a’y?
2: 2 :

x y

= —S+—3=1

X

« (2

Since PF, + PF, is greater than the length F;F, (triangle inequality for triangle PF,F,)
the number 2a is greater than 2c. Accordingly, @ > ¢ and the number a2 - c2 in Equatior
(2) is positive.

The algfabraic steps leading to Equation (2) can be reversed to show that every point F
whose coordinates satisfy an equation of this form with 0 < ¢ < a also satisfies ‘the equatior

PF, + PF, = 2a. A point therefore lies on the ellipse if and only if its coordinates satisfy
Equation (2).

If b= ‘[az. —-c? . 3
then g% — ¢? =b* and Equation (2) takes the form
2 2 :
xty .
—_— = 1
St )

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both
coordinate axes. It lies inside the vectangle bounded by the lines x = + @ and y = % b. It crosses

the axes at the point (4, 0) and (0, + b). The tangents at these points are perpendiculur tc
the 'axes because -

—_— = — (obtained from Equation (4) by implicit differentiation)

is zero if x = O and infinity if y = 0. .
The major axis of the ellipse in Equation (4) is the line segment of length 2a joining

the points (xa, 0). The minor axis is the line segment of length joining the points (0, t b).

The number a itself is the semimajor axis, the number b the semiminor axis. The nutnb¢1

¢, found from Equation (3) as ¢ = ,/az —b?, is the center-to-focus distance of the ellipse.
Example-2 : '

Find semimajor axis, semiminor axis, center-to-focus distance, foci, vertices, and center for

2y s=1]on
1 o=l
16 9
Solution : From Fig. 8
Semimajor axis : a = Ji6 =4, Focus N
L e p = - 7o 4,0)
Semiminor axis : b = V9 =3 (Nn0) \59n9x
Center
Center-to-focus distance : ¢ = /16 -9 =
1 = R 0 -
Foci : (x¢c, 0) = (£ J7,0) o9

Vertices : (ta, 0), (x4, 0)
(©, 0). '

Fig. 8 : An ellipse with its

Center : major axis horizontal
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= / ‘ If the foci are Fi(—c¢, 0) and Fy(c, 0) (Fig. 10) and the constant ydii"ference is 2a, then
i i é oint (x, y) lies on the hyperbola if and only if _ .
@) %-+llg=l Fofy = 4 LVortex 0.4 i a point (x, y) x=-a ﬁ x=a
4 2, .2 2, .2 _ 7
{ —NEx=P+yr=t2a. .. (D .
Solution : | \/(x +c) +y w[(x -C) y | ;
The ellipse Foous? (0,V7) ; To simplify this equation, we move the second © - )
' 5 radical to the right-hand side, square, isolate the
£2—+y—2 =1 ' remaining redical and square again, obtaining. _t ~ |
. 9 16 _ ¢3,0) @O, ! ER | } |
obtained by interchanging x and y in Equation (5), has Center |O B LA — =1 L ® T 5 o~
its major axis vertical instead of horizontal (Fig. 9). a a .
With o2 still equal to 16 and b2 equal to 9, we have So far, this looks just like the equation for an
Semimajor axis : a = V16 = 4, Foas¢ (0:-V7) ellipse. But now a”-c* is negative becausc 2a,
Semiminor axis : b = «/'9_ =3 !)eing the difference of. two.sides of triangle PFF,
Center-to-focus distance : ¢ = [16-9 = J7 Vertex | (0,-4) is less than 2c, the third side. .

Fig. 9 : An ellipse with its major
-axis vertical

£ 0, £¢) = (0, 47)
Vertices : (0, xa), (0, £4)
Center : (0, 0).

®m  Standard-Form Equations for Ellipses Centered at the Origin :

Foci

2

2
Foci on the x-axis : 2= +y—2=1 (a > b)
a

o

Center-to-focus distance : ¢ =
Foci : (x¢, 0)
Vertices : (xa, 0)

2 2
x Y
_.+_2_

Center-to-focus distance : ¢ = \/a2 -5

Foci : (0, £¢)
Vertices : (0, *a)

Foci on the y-axis : =1 (a > b)

o
N

In each case, a is the semimajor axis and b is the semiminor axis.

®  Hyperbolas :
Deﬁnitions : Hyperbola, Foci

A hyperbola is the set of points in a plane whose distances from two fixed points in the
plane have a constant difference. The two fixed points are foci of the hyperbola,

The algebraic steps leading to Equation (8) can '
be reversed to show that every point P whose Fig.10: Hyperbolashave twobranches. For
coordinates satisfy an equation of this form with 0  Ppointsentheright-hand branch of the
< a < c also satisfies Equation (7). A point therzfore hYPerbolashown here, PF; - PF; = 2. For
lies on the hyperbola if and only if its coordinates POintson theleft-hand branch PF; - PF; =2a.
satisfy Equation (8). We then let p = ,/cz -a®.

If we let b denote the positive square root of ¢?-—a?,

b= ,/cz—az s i ’ IR ()]
then a®-c? =-b* and Equation (8) takes the more compact form

2
X y _
—2————1

« (10)
at b ,
The differences between Equation (10) ard the equation for an ellipse (EquTtion 4) are
the minus sign and the new relation : ' .
c*=a*+b*.  From Equation (9)
Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate axes.
It crosses the x-axis at the point (+a, 0). The tangents at these points are -vertical because
dy bx

& ay 1
is infinite when y = 0. The hyperbola has no y-intercepts; in fact, no part of the curve lies
between the lines x = —a and x = q.

~

(Obtained from Equation (10) by implicit differentiation)-

Definitions : Focal Axis, Center, Vertices

The line through the foci of a hyperbola is the focal axis. The point on the axis halfway
between the foci is the hyperbola’s center. The points where the focal axis and hyperbola
cross are the vertices (Fig. 11).
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Vertices

Foous
Cemer/‘ -
Focal axis

Fig. 11 : Points on the focal axis of a hyperbola

n  Asymptotes of Hypei’bolas and Graphing :
If we solve Equation (10) for y we obtain

o5

yz
i xz 1~ a_z
az x2

or, taking square roots,

’ 2
a X

’ 2 b .
As x — + oo, the factor f1~ f% approaches 1, and the factor i( ]x is dominant. Thus
‘ x

a

the lines

y= % —ll X
a
are the asymptotes of the hyperbola defined by Equation (10). The asymptotes give the
guidance we need to graph hyperbolas quickly. The fastest way to find the equations of the
asymptotes is to replace the 1 in Equation (10) by 0 and solve the new equation for y:

2 2 2 2 b
,x__l..=1—).x_.__y_=0__> y.__.i__x
“a¥ 2 a? 2 a
a_v ¢ b |
yperbola 0forl asymptotes

|
|

w
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m  Standard-From 'Equations for Hyperbolas Centered at the Origin :

~

2
X
-2y =1

a

Center-to-focus distance : ¢ = a® +b?
Foci : (xc¢, 0)

Foci on the x-axis :

o

Vertices : (xa, 0)
2 2 b
Asymptotes : _{_2__)’_2=0 or y=t—x
a b a
LI
Foci on the y-axis : = — = =1
y a’ b .
Center-to-focus distance : ¢ = +Ja’ +b?
Foci : (0, £¢)
Vertices : (0, +a)
2 2 a
Asymptotes : 2~ X = =t-—x
symptotes pEiR 0 or Yy b

Notice' the difference in the asymptote equations (b/a in the first, a/b in the second).
Example-3 : '

Find center-to-focus distance, foci; vertices, center and asymptotoes for

2 2

W Z-L=1
4 5

Solution :

The equation
2

2 .
. X Yy 2 y2 _
i _ — =1, « (11 -z =1
v 775 (11) x
is Equation (10) with a2 = 4 and b2 = § (Fig. 12).

’ B We have

: Center-to-focus distance :

c= J@ B = fi35 =3
! Foci : (x¢, 0) = (x3, 0)

Vertices : (xa, 0), (x2, 0)
Center : (0, 0).

X

™~

Fig. 12 : The hyperbola and its

= asymptotes in Example-1

4

2|5

2
Asymptotes : - XS— =0 o y=%

e




56
2 2
2 Y _X _
4 5 y=-Fx
Solution :
The hyperbola )
| »_E
4 S

obtained by interchanging x and y in Equation (11), has
its vertices on the y-axis instead of the x-axis (Fig. 13).
With @2 still equal to 4 and b2 equal to 5, we have

Center-to-focus distance : ¢ = ,/az +b = fJa+5 =3

Foci : (0, £¢) = (0, £3)

Fig. 13 : The hyperbola
and its asymptotes

« Vertices : (0, £a) = (0, =2)
Center : (0, 0).

2 2 2
Asymptotes : y——x?=0 or y=iﬁx

Reflective Properties :

The chief applications of parabolas involve their use as reflectors of light and radio waves.
Rays originating at a parabola’s focus are reflected out of the parabola parallel to the parabola’s
axis (Fig. 14). Moreover, the time any ray takes from the focus to a line parallel to the parabola’s
directrix (thus perpendicular to its axis) is the same for each of the rays. These properties are
used by flashlight, headlight, and spotlight reflectors and by microwave broadcast antennas.

Outgoing light
Parabolic light parallel to Ads
refleclor
Filament (Poirt source)
P atfocus

Headlamp N

3 . RADIO TELESCOPE
Fig. 14 : Parabolic reflectors can generate a beam of light parallel to the parabola’s axis from a

source at the focus; or they can receive rays parallel to the axis and concentrate them at the focus,

'
i
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If an ellipse is revolved about its major axis to generate a surface (the _surfacg-i_s qalle@f an -
ellipsoid) and the interior is silvered to produce a mirror; light from one focus W,i_ll be ;eﬂectffd .‘
to the other focus (Fig. 15). Ellipsoids reflect sound the same way, and this propgrty'is' pse“di _
to construct whispéring galleries, rooms in which a person standing_' at one focus. can_hgar a]
whisper from the other focus. _(Statuary Hall in the U_;S.-Capitol building is a whisperin_g"‘gallgry)_; .

Fig. 15 : An elliptical mirror (shown here in proﬁie) re_ﬂects‘light from one focus to the other

Light directed toward one focus of a hyperbolic mirror *
is reflected toward the other focus. This. property of
hyperbolas is combined with the reflective properties of -
parabolas and ellipses in designing some modern telescopes:
In Fig. 16 starlight reflects off a parimar parabolic.mirror
toward the mirror’s focus Fp. It is then reflected by a small
hyperbolic mirror, whose focus is FH_é Fp, toward the second-
focus of the hyperbola, Fg = Fy. Since this focus is shared
by an _ellipse, the light is reflected by the eiliptical mirrof to
the ellipse’s second focus to be seen by an -observer. .

o Fi=Fp

55

Primary Mirmor
Fig. 16 : Schematic drawing of

a reflecting telescope
Calculus /2018 / 8
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EXERCISE-1

Identifying Graphs :

Match the parabolas in Exercise 1-4 with the
following equations.

x* =2y, x* =—6y, y* =8x, y*=—4x
- Then find the parabola’s focus and directrix.
¥, 3

e
.

2.

N
4 S

Match each conic section in- Exercises 5-8 with
one of these equation :

X

Exercises 9-16 give equations of parabolas.
Find each parabola’s focus and directrix. Then

sketch the parabola. Include the focus and
directrix in your sketch.

7.

-
N

Parabolas :

9. y'=12x 10. x* =6y
11. x*=-8y 12. y*=-2x
13. y=4x* 14, y=-8x
15. x=-3y° 16. x=2y"
Ellipses :

Exercises 17-24 give equations for ellipses. Put
each equation in standard form. Then sketch
the ellipse. Include the foci in your sketch.

17. 16x +25y* =400

18. 7x* +16y* =112

19. 2x* +y? =2

20, 2x*+y* =4

21. 3x%+2y*=6

22. 9x* +10y* =90

23. 6x* +9y* =54

24, 169x* +25y* = 4225

Exercises 25 and 26 give information about the
foci and vertices of ellipses centered at the
origin of the xy-plane. In each case, find the
ellipse’s standard-form equation from the given
information.

25. Foci : (:t«/i, 0): Vertices : (£2, 0)

26. Foci : (0, +4); Vertices : (0, +5)

Hyperbolic Functions, Higher Order Derivatives, Indeterminate Forms, Conic Sections

59

' Hyperbolas :

Exercises 27-34 give equations for hyperbolas.
put each equation in standard form and find the

- hyperbola’s asymptotes. Then sketch the
. hyperbola. Include the asymptotes and foci in

your sketch.

21 P -yt=1

128, 9x% —16y* =144
2. y -x*=8
130,y -x*=4
31 8x2-2y?=16
32, ¥y -3x*=3

133 8y’ -2x* =16
34, 64y? —36y" =2304

" Exercise 35-38 give information about the

ifoci, vertices, and asymptotes of hyperbolas

. centered at the origin of the xy-plane. In each
"case, find the hyperbola’s standard-form

+ . equation from the information given.

-35. Foci : (0, +2); Asymptotes : y = + x

'36. Foci: (2, 0); Asymptotes: y==% ——j: x

37. Vertices: (+ 3,0); Asymptotes: y =% —x

38, Vertices : (0, +2); Asymptotes: y =% — x

P~ W W

Shifting Conic Sections :

39, The parabola y? =8x is shifted down 2
units and right 1 unit to generate the
parabola (y +2)* =8(x—1).

(a) Find the new parabola’s vertex, focus,

and directrix.
(b) Plot the new vertex, focus, and
directrix, and sketch in the parabola.

40. The parabola x® =—4y is shifted left 1
unit and up 3 units to generate the
parabola (x + 1) = —4(y - 3).

(@)

Find the new parabola’s. vertex, focus
and directrix. :

Plot the new vertex, focus, and
directrix, and sketch in the parabola.
Theellipse (x?/16) + (y*/9) =1 is shifted
4 units to the right and 3 units up to
generate the ellipse

G-, 0= _,
16 9

Find the foci, vertices, and cénter of
the new ellipse.

(b)

41.

(a)
(b) Plot the new foci, vertices, and center,
and sketch in the new ellipse.
The ellipse (x2/9) + (y2/25) = 1 is shifted
3 units to the left and 2 units down to
genéfate the ellipse '

42.

(x +3)° . (y+2) _

9 25
Find the foci, vertices, and center of
the new ellipsé.' '

1.

(a)

Plot the new foci, vertices, and\center,
and sketch in the new ellipse.

(b)

43. The -hyperbola (x/16) = (49) = 1 is
shifted 2 units to the right to generate the
hyperbola

: 2 2
=2t 2y,
16 9

(a) Find the foci, vertices, and asymptotes
of the new ellipse. .
Plot the new foci, vertices, and
asymptotes, and sketch in the
hyperbola.

(b)

e G
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44. The hyperbola (y2/4) ~ (x2/5) = 1 is shifted 53 2y _ 1 right 2, up 2
2 units down to generate the hyperbola e —5' =1, nght 2,
o+ 2 2
4 —5_1' 54, %—%=l,left2,downl
(a) Find the center, foci, vertices, and .
asymptotes of the new hyperbola. 55, y* =x*=1, left 1, down |
Plot the new center, foci, vertices, 2 )
®) Flo 56. 2 -x* =1, right 1, up 3

and asymptotes, and sketch in the

" hyperbota.
Exercise 45-48 yrive equations for parabolas
and tell how many units up or down and to the
right or left each parabola is to be shifted. Find
an equation for the new parabola, and find the

new vertex, focus, and directrix.
45, y2 =4x, left 2, down 3
46. y?=-12x, right 4, up 3
47. x* =8y, right 1, down 7
‘48. x* =6y, left 3, down 2

Exercise 49-52 give equation for ellipses> and
" tell how many units up or down and to the right
or left each ellipse is to be shifted, Find an

equation for the new ellipse, and find the new
foci, vertices, and center.
2 2
X0y
49, — +<—=1, left 2, down 1
6 9
£
50. --2-—-0-_)'2 =1, right 3, up 4
2 2
51. —xé—+22—=l, right 2, up 3
2 2
X Y
. —+—=1, left 4, d 5
52 1625 e own

Exercise¢ 53-56 give equations for hyperbolas
and tell how many units up or down and to the
right or left each hyperbola is to be shifted. Find
an equation for the new hyperbola, and find the
new center, foci, vertices, and asymptotes.

Find the center, foci, vertices, asymptotes, and ;
radius, as appropriate, of the conic sections in
Exercises 57-68.

57. 2 +dx+y*=12

58. 2x% +2y? —28x+ 12y +114=0
59, x2+2x+4y-3=0

60. y*-4y-8x—-12=0

61. x®+5y*+4x=1

62. 9x* +6y* +36y=0

63. x*+2y?-2x—-4dy=-1

64.
65.
66.
67.
68.

Inequalities :

4x* + y? +8x =2y =~1
-y -2x+4y=4
-y +4x-6y=6
20— y? +6y=3

y? ~4x* +16x =24

S.ketch the regions in the xy-plane whose
coordinates satisfy the inequalities or pairs of -

inequalities in Exercise 69-74. i

|

69. 9x* +16y* <144 !
70. x*+y?21 and 4x? +y? <4
71. x*+4y* >4 and 4x® +9y% <36

72. (P +y?-4)(x? +9y’ -9)<0

73. 4y2-x224

74, 1x*-y?11
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[ CLASSIFYING CONIC SECTIONS BY ECCENTRICITY

‘We now show how to associate with each conic section a number called the conic section’s
eccentricity, The eccentricity reveals the conic section’s type (circle, ellipse, parabola, or
hyperbola) and, in the case of ellipses and hyperbolas, describes the conic section’s general
proportions. ‘

Eccentricity :

Although the center-to-focus distance ¢ does not appear in the equation
2y
St
a b :
for an ellipse, we can still determine ¢ from the equation ¢ = a® — b* . If we fix a and vary
¢ over the interval 0 < ¢ < a, the resulting ellipses will vary shape (Fig. 17). They are circles
if ¢ = 0 (so that @ = b) and flatten as ¢ increases. If ¢ = g, the foci and vertices overlap and

the ellipse degenerates into a line segment.

We use the ratio of ¢ to @ to describe the various shapes the ellipse can take. We call
this ratio the ellipse’s eccentricity.

1,@>b)

-

F1 c=a o=
Fig. 17 : The ellipse changes from a circle to u line segment as ¢ increases froni 0 to a.

Definition : Eccentricity of an Elipse

\/az - b? .

a

2 2
The eccentricity of the ellipse (%]+ (%2- ]:.1 (@a>b) is e=E=
a a
' The planets in the solar system revolve around th
with the sun at one focus. Most of the orbits are ne

eccentricities in Table-2, Pluto has a fairly eccentric
with e =

e sun in (approximate) elliptical orbits
arly circular, as can be seen from the

orbit, with ¢ = 0.25, as does Mercu
0.21. Other members of the solar system have orbits that are c\:en more eccentnl'zj
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Icarus, an asteroid about 1 mile wide that revolves around the sun every 409 Earth days, has l
an orbital eccentricity of 0.83 (Fig. 13).

Table-2 : Eccentricities of planetary -orbits

Mercury 0.21 | Saturn 0.06
Venus 0.01 | Uranus 0.05
Earth 0.02 | Neptune 0.01
Mars 0.09 | Pluto 0.25
Jupiter 0.05

The planets in the solar system revolve around the sun in (approximate) elliptical orbits
with the sun at one focus. Most of the orbits are nearly circular, as can be seen from the
eccentricities in Table-2. Pluto has a fairly eccentric orbit, with e = 0.25, as does Mercury,
with e = 0.21. Other members of the solar system have orbits that are even more eccentric.
Icarus, as asteroid about 1 mile wide that revolves around the sun every 409 Earth days, has
an orbital eccentricity of 0.83 (Fig. 18). :

Mars

orbi highly eccentric.
Fig, 18 : The orbit of the asteroid Jcarus is E
Earth’s orbit is so nearly circular that its foci lie inside the sun

Example-1 : Halley’s Comet

The orbit of Halley’s comet is an ellipse 36.18 astronomical units long by 9.12
astronomical units wide. (One astronomical unir [AU] is 149,597,870 km, the semimajor axis
of Earth’s orbit.) Its eccentricity is

= % o
.- Ja? -b? ) 2 2 ) _ J(8.09)° - (4.56)
a

1 18.09
( 5 )(36.18)

Whereas a parabola has one focus and one directrix, each ellipse has two foci and two
directrices. These are the lines perpendicular to the major axis at distance * a/e from the center.
The parabola has the property that -

PF=1.PD o
for any point P on it, where F is the focus and D is the point nearest P on the directrix. For
an ellipse, it can be shown that the equations that replace Equation (1) are

PF] =e: PDI, PFZ =e - pD2 e (2)

Here, e is the eccentricity, P is any point on the ellipse, F; and F, are the foci, and D,
and D, are the points on the directrixes nearest P (Fig. 19). '

In both Equations (2) the directrix y - oof
and focus must correspond; that is, if D'_"_w;i“ ‘ Directrix 2
we use the distance from P to F;, we x= x=§
must also use the distance from P to the
directrix at the same end of the ellipse.
The directrix x = ~ale corresponds to
Fi(-¢, 0), and the directrix x = ale
corresponds to Fy(c, 0). . D1

=~ 0.97.

nbz

The eccentricity of a hyperbola is :
also ¢ = c/a, only in this case ¢ equals
Jaz +b? instead of a®-b*. In ‘
contrast to the eccentricity of an ellipse, - N

the eccentricity of a hyperbola is always Fig. 19 : The foci and directrices of the ellipse
greater than 1. *(x2/a2) + (y2/b2) = 1. Directrix 1 corresponds

d di ix 2 to focus F.
Definition : Eccentricity of Hyperbola to focus Fy, and directrix T 2

. x? ¥ . c a® + b*
The eccentricity of the hyperbola ? -5 =1 is e=z=—:—'—.- ]

e e e e Y i A
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In both ellipse and hyperbola, the eccentricity is the ratio of the distance between the
foci to the distance between the vertices (because cla = 2c/2a).
distance between foci

.Eccentricity = — —
: y distance between vertices

In an ellipse, the foci are closer together than the vertices and the ratio is less than 1.
In a hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

Exafnple-Z :

Locate the vertices of an ellipse of accentricity 0.8 whose foci lie at the points (0, +7).

Solution :

Since e = cfa, the vertices are the points (0, +a) where

e
or (0, = 8.75)

Example-3 :
Find the eccentricity of the hyperbola 12x* —27y? =108.
Solution : .

We divide both sides of the hyperbola's equation by 108 to put in standard form

125 27y° Py
X a ad oL
108 108 9 4
With 2 =9 and b* =4, we find that c=ya> +b* = J9+4 = |13, so
Directrix 1 y Directrix 2
e = E- = ir}-_ X='s X=8
a 3
As with the ellipse, it can be shown that 'the lines D1
x = tale act as directrices for the hyperbola and that
PFl =e- PD], PFZ =€ - PD2 . (3)
Here, P is any point on the hyperbola, F; and F, are Frto
- -¢|
the foci, and Dy and D, are the points nearest P on the

directrices (Fig. 20).

To complete the picture, we define the eccentricity

of a parabola to be e = 1. Equations(1) to (3) then have
the commor form PF = ¢ . PD.

[ -C » gg

Fig. 20 : The foci and directrices of the
ellipse (x¥a2) - (2/p2) = 1.
Nomatter where Plies on the hyperhola,
PFl =e- PD] and PFZ =g PDz

Definition : Eccentricity of a Parabola
The eccentricity of a parabola is e = 1.

i
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The “focus-directrix” equation PF = ¢ : PF unites the parabola, ellipse, and hyperbola
in the following way. Suppose that the distance PF of a-point P from a fixed poi.nt F (the focus)
is a constant, multiple of its distance from a fixed line .(the directrix). That is, suppose

PF=c PD, ' . @
l where ¢ is the constant of proportionality. Then the path traced by P is
(a) a parabola if e = 1,
(b) an ellipse of eccentricity e if e < 1, and
" (c) a hyperbola of eccentricity eif e > 1.
i There are no coordinates in Equation (4) and when we try to translate it into coordinate
{ form it translates in different ways, depending on the size of e. At least, that is what happens
{  in Cartesian coordinates. However, in polaf coordinates, as we will see in next unit, the equation
PF = e - PD translates into a single equation regardless of the value of ¢, an equation so simple
that it has been the equation of choice of astronomers and space scientists for nearly 300 years.
Given the focus and corresponding directrix of a hyperbola centered at the origin and

with foci on the x-axis, we can use the dimensions shown in Fig.' 20 to find ¢, Knowing e,

we can derive a Cartesian equation for the hyperbola from the equation PF = e - PD, as in

the next example. We can find equations for ellipses centered at the origin and with foci on
the x-axis in a similar wa, using the dimensions shown in Fig. 19.

Example-4 :

Find a Cartesian equation for the hyperbola centered at the origin that has a focus (3, 0)
and the line x = 1 as the corresponding directrix. '
Solution :

We first use the dimensions shown in Fig. 20 to find the hyperbola’s eccentricity. The
focus is 4 \

(c, ) =(3,0 so ¢=3,
The directrix is the line

x=—=1, s0o a=e

o |8

When combined with the equation e = c/a that defines eccentricity, these results give

e=—==>, so €2 =3 and e=+3

Knowing e, we can now derive the equation we want from the equation PF = e - PD.
In the notation of Fig. 21, we have ‘
PF = ¢ - PD (equation (4))

Calculus 12018/ 9
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Fig. 21 : The hyperbola and directrix in Example-4

=92 £G-07F = Blx-1] (=45

2 =6x+9+y% = 32 ~2x+1)

2x2__y2 ___6
2 2
=X o
3 6

EXERCISE-Z |

Ellipses :
In Exercise 18, find the eccentricity of the
ellipse. Then find and graph the ellipse’s foci
and directrices.
162 +25y* =400

7x + 16y% =112
S 2t + y2 =2

2x* +y =4

powoR o

5. 3x2+2y°=6

6. 9x% +10y® =90

7. 6x*+9y* =54

8. 169x% +25y* =4225

-Exercise 9-12 give the foci or vertices and the
eccentricities of ellipses centered at the origin
of the xy-plane. In each ‘case, find the ellipses’
standard-form equation. '

9. Foci : (0, £3), Eccentricity : 0.5

10. Foci : (+38, 0), Eccentricity : 0.2

11. Vertices : (0, + 70), Eccentricity : 0.1
12. Vertices : (x 10, 0), Eccentricity : 0.24
Exercise 13-16 give foci and corresponding
directrices of ellipses centered at the origin of
the xy-plane. In each case, use the dimensions
in Fig. 19 to find the eccentricity of the ellipse.
Then find the ellipe’s standard form equation.

. . 9
13. Focus : JE, 0), Directrix ; x=-=
0 75

14. Focus : (4,A 0), Directrix :

x=—

15. Focus : (-4, 0), Directrix ;: x = — 16

16. Focus : (~y2,0), Directrix : x=- 22

17. Draw an ellipse of eccentricity 4/5.
Explain your procedure.

18. Draw the orbit of Pluto (eccentricity
0.25) to 'scale. Explain your procedure.

19. The endpoints of the major and minor
axes of an ellipse are (1, 1), (3, 4), (1,7)
and (-1, 4). Sketch the ellipse, give its
equation in standard form, and find its
foci, eccentricity, and directrices.

20. Find an equation for the ellipse of
eccentricity 2/3 that has the line x = 9 as
a directrix and the point (4, 0) as the
corresponding focus,. .

21. What values of the constants a, b and ¢
make the ellipse

dx’ +y* +ax+by+c=0

lie tangent to the x-axis at the origin and
pass through the point (-1, 2) ? What is
the eccentricity of the ellipse ?

Hyperbolas :

In Exercises 22-29, find the eccentricity of
the hyperbola, Then find and graph the
hyperbola’s foci and directrices.

22, x*-y=i
23. 9x* - 16y* =144
24, yz - xz =8

25, y2-xt=4

26. 8x* -2y* =16

27. y*-3x*=3

28. 8y?-2x*=16

29. 64x* - 36y* =2304

Exercises 30-33 give the eccentricities znd
the vertices or foci of hyperbolas centered at

the origin of the xy-plane. In each case, find
the hyperbola’s standard form equation.
30. Eccentricity : 3, Vertices ¢ (0, * 1)

: 2, Vertices : (i 2, 0)

32. Eccentricity : 3, Foci : (3, 0)

33. Eccentricity : 5/4, Foci : (5, 0)
Exercises 34-37 give foci and correspondiag
directrices of hyperbola centered at the origin
of the xy-plane. In each case, find tae
hyperbola’s eccentricity. Then |find the
hyperbola’s standard form equation.

31. Eccentricity

34. Focus : (4, 0), Directrix : x = 2
35. Focus : («/ﬁ, 0), Directrix : x = 2

x=-

0 |

36. Focus : (-2, 0), Focus :

37. Focus : (-6, 0), Directrix : x = -2

38. A hyperbola of eccentricity 3/2 has one
focus at (1, ~3). The corresponding
directrix is the line y = 2. Find an
equation for the hyperbola.
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| QUADRATIC EQUATIONS AND ROTATIOI‘E_]
In this section, we examine the Cartesian graph of any equation
Ax® +Bxy+Cy? +Dx+Ey+F=0 o (D)
in which A, B and C are not all zero, and show that it is nearly always a conic section. The
ptions are the cases in which there is not graph at all or the graph consists of two parallel

exce
ines. It is conventional to call all graphs of Equation (1), curved or not, quadratic curves.

The Cross Product Term :

You may have noticed that the term Bxy did not 2y =9
appear in the equations for the conic sections in earlier '
section This ‘happened because the axes of the conic
sections ran parallel to (in fact, coincided with) the
coordinate axes.

To see what happens when the parallelism is absent,
et us write an equation for a hyperbola with a = 3 and
foci at Fi(=3, =3) and Fy(3, 3) (Fig. 22).

“The equation

| PFy - PFy | = 2a because | PF; — PF, | = 6 and

e+ +(+37 = Jx=37 +(y-3) £ 6.

When we transpose one radical, square, solve for the
radical that still appears, and square again, the equation
reduces 10

Fig. 22 : The focal axis of the

hyperbola 2xy = 9 makes and

angle of n/4 radians with the
positive x-axis

2y =9, | |

of Equati 1) i i .
2 case . 10f1 (1) in which the cross product term is present. The asymptotes of the
hyperbola in Equation (2) are the x and y-axes, and the focal axis makes an angle of n/4 radians

with the positive x-axis. As in this example, the cross product term is present in Equation ¢
only when the axes of the conic are tilted.

imi g .
' .To eltlh rll‘z:'tle"th.e xy-term from the equation of a conic, we rotate the coordinate axes to
eliminate the “tilt” in the aces of the conic. The equations for the rotations ‘e use are derived

in the follo“'mfg way. In the notation of Fig. 23, which shows a counter-clockwise rotation
ghout the origin through an angle o, :

%= OM = OP cos(§ + &) = OP cos8 cosa — OP sin® sino:

¥ =MP = OP sin(8 + o) = OP cosB sinat + OP sin® sinc O

#5 RSP G
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- y
Since
OP cos8 = OM’ = X’
) v PRYI=CY)
an

OP sin® = MP =y,
Equations (3) reduce to the following.
Equations for Rotating Coordinate Axes :
x = x'cos. — y'sinct L@

y = xcosa. ~ y'cose

Fig. 23 : A counterclockwise rotation
through angle o about the origin

Example-1 :
The x and y-axes rotated through an angle of /4 radians about the origin. Find an equation

for the hyperbola 2xy = 9 in the new coordinates. - y
Solution : .

. i . 1 Lo
Since cos — = sm E- = —=, W substitute
4 4 2

_X,-}’I —xl+yl

¥ TR

from equation (4) into the equation X.
2xy = 9 and obtain
xl — yl xl + yl

2 =

= x/2 _ yl2 - 9
x'z y12 . o

= —9— - —9— =1 Fig. 24 : The hyperbola in Example-1
See Fig, 24, | t4 z‘md y’ are the coordinates)
If we apply Equation (4) to the quadratic equation (1), we obtain a new quadratic equation

Ax? +Bxy +CY* + DX +EY +F=0 e (8

The new and old coefficients are related by the equations
A’ = Acose + Bcosa sine + C sin0i
B’ = Beos2a + (C - A) sin200
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’ . .
C’ = Asin20 ~ Bsina coso, + C cos2o,

D’ = Dcosa-+ Esing,
E’ = -Dsina + E cosa
F =F

. These equations show, among other things, that if we start with an equation for a curve
in whlch.the f:mss Product term is present (8 # 0), we can find a rotation angle o that produces
an equation in which no cross product term appears (B’ = 0). To find o, we set B’ = 0 in
the second equation_in (6) and solve the resulting equation,
B cos?a + (C - A) sin2a = 0,
for o. In practice, this means determining & from one of the two equations,
Angle of Rotation : '
-C
or tan2o = —B— : @)
' YN

cot2o = A

Example-2 :
The coordinate axes are to be rotated through an angle o. to produce an equation foxi the curve
2%+ Bry+ 32 -10=0
that has no cross product term. Find o and then new equation. Identify the curve.
Solution :

The equation 242 +J§xy+ y2-10=0 has A =2, B = /3, and C = 1. We substitute
these values into Equation (7) to find o :

A-C _2-1 1

cos20 = S—= e
N
From the right triangle in Fig. 25, we see that one 2 P
3
appropriate choice of angle is 20, = g, so we take o= 2.
2a

1
Fig. 25 : This triangle identifies
20 = cot-}(1/4/3) as 773
(Example-2)

Substituting a:%,A=2,B= V3,C=1,D=E=0and

F = - 10 into Equations (6) gives
A= %, B'=0, C = —1—, IY=E =0,
Equation. (5) the gives

= - 10.

[ &)

?
xl2 2

4 =1,

N e
<

ix'2+_l.y'2_1o=0‘ or
2 2

e g e o om
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The curve is an ellipse with foci on the new y'-axis (Fig. 26).
' y

245

" 42
z4-%:1 m X'

10
245

Fig. 26 : The conic section in Example-2

Possible Graphs of Quadratic Equations :
We now return to the graph of the general quadratic equation.
Since aces can always be rotated to eliminate the cross product term, there is no loss of
generality in assuming that this has been done and that our equation has the form
A2 +Cy2+Dx+Ey +F=0 ' v (8)
Equation (8) represents :
(a) a circle if A = C # O (special cases : the graph is a point or there is no graph at all):
(b) a parabola if Equation (8) is quadratic in one variable and linear in the other;
(c) an ellipse if A and C are both positive or both negative (special cases : circles, a
single point, or no graph at all); |
(d) a hyperbola if A and C have opposite signs (special case : a pair of intersecting lines):
(e) a straight line if A and C are zero and at least one of D and E is different from zero;
(f) one or two straight lines if the left-hand side of Equation (8) can be ‘factored into
the product of two linear factors.

See Table-1.3 for examples. _
Table-1.3 : Examples of quadratic curves Ax2 + Bxy + Cy? + Dx + Ey + F = 0

A B CiD EI|F Equation Remarks
Circle 1 1 ~4 x2_+y2— 4 A=C; F<0
Parabola 1 -9 y'=9x Quadratic in y,
linear in x
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Ellipse 4 9 =36 | 4x® +9y*=36 A, C have same
sign, A2 C; F<O
Hyperbola 1 -1 -1 xt—yt=1ys fA, C have opposite
signs
One line (still a| 1 =0 y-axis
conic section)
Intersecting 1 1 -1 | -1] xy+x-y-1=0 Factors to
lines (still a (x-DHy+1DH=0,
conic section) sox=1,y=-1
Parallel lines 1 -3 2 | x*=-3x+2=0 Factors to
(not a conic x-1D(x-2)=0,
section) sox=1x=2
Point 1 1 X2+y*=0 The origin
No graph 1 1 == No graph

The Discriminant Test
We do not need to eliminate the xy-term from the equation
Ax2 +Bxy + Cy2 + Dx+ Ey + F= 0
to tell what kind of conic section the equation represents. If this is the only information we
want, we can apply the following est instead.

A we have seen, if B 0, then rotating the coordinate axes through an angle o that satisfies
the equation

A-C

cos2q= .. (10)

will change Equation (9) into an equivalent form
AX? +Cy? + DY +EY +F =0

without a cross product term.

.. (11)

Now, the graph of Equation (I1) is a (real degenerate)

(a) parabola if A" or C’ = 0; that is, if A’'C’ = 0;

(b) ellipse if A" and C’ have the same sign; that is, if A'C’ > 0;

(c) hyperbola if A’ and C’ have -opposite signs; that is, if AC’ < 0.

It can also be verified from Equations (6) that for any rotation of axes,

B? —4AC =B"? —4AC’ . (12)

t
t
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This means that the quantity B2 — 4AC is not changed by rotation. But when we rotate '
through the angle o given by Equation (10), B’ becomes zero, so
B? - 4AC=-4AC’. ' ' /
Since the curve is a parabola if A'C’ = 0, an ellipse if A’C’ > 0, and a hyperbola if ! .
A’C’ < 0, the curve must be parabola if BZ — 4AC = 0, and ellipse if B2 — 4AC < 0, and a
hyperbola if B2 — 4AC > 0. The number B2 - 4AC is called the discriminant of Equation (9). -

The Discriminant Test : . . -
With the understanding that occasional degenerate cases may arise, the quadratic curve
A +Bxy +Cy> +Dx+Ey+F=0 is
(a) a parabola if B2 - 4AC = 0,
(b) an ellipse if B2 -~ 4AC < 0,
(c) a hyperbola if B2 - 4AC > 0.

Example-3 : y
Use Discriminant test to decide whether following equations represent parabolas, ellipses.
or hyperbolas.
(a) 3x® —6xy +3y*+2x—-7=0 represents a parabola because
B? - 4AC=(-6)>-4-3-3=36-36=0.
(b) 36x* +4y? —72x+32y —44=0 represcnts an ellipse because
B2 - 4AC =0~ (4) (36) (4) < 0.
€ xy-y2-55+1=0 represénts a hyperbola because
B2-4AC=(1)2-40) (-1)=1>0.

I EXERCISE-3 I

Using the Discriminant : 7. x4+ dxy + 4yt -3x=6 \
Use the discriminant B2 — 4AC to decide | 8. x*+y?+3x-2y=10
weather the equations in Exercise 1-1 619, xy+ y2 -3x=5

represent parabolas, ellipses, or hyperbolas.

10. 3%% +6xy+3y? —dx+Sy=12

1. 2x* -8xy+8y* +2x+2y=0 11, 3x% -5xy+2y* - Tx-14y=~—1 :
2. 3% —18xy+27y’ —Sx+Ty==4 12. 2x% =362y +3y? —4x=7 |
3. 32 —Tay+417y =1 13. x? -3xy+3y* +6y=7 |

4. 2 -J5xy+2y* +x+y=0 14, 25x% +21xy +4y* —350x =0 -

5. X -2x+y +2x—y+2=0 15. 6x2+3xy+2y> +17y+2=0

6. 2 -y’ +4xy—-2x+3y=6 16. 3x® +12xy +12y® + 435x - 9y + 72 = 0
Calculus /2018 / 10
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Rotating Coordinate Axes :
In Exercise 17-26, rotate the coordinate axes
to change the given equation into an equation
that has no cross product (xy) term. Then
identify the graph of the equation. (The new
equations will vary with the size and direction
. of the rotation you use.)
17. xy =2
18. X +xy+y’=1
19. 3x* +23xy + y? - 83y =0
20. 2 -\Bxy+2y* =1
21, x-2xy+yt =2
©3x% — 2By + y? =1
23. V22 + 2V2xy + 2y* -8x +8y =0
« Xy -y-x+1=0
25. 3x* +2xp+3y* =19
- 3 4 4By — P =T
. Find the sine and cosine of an angle in
Quadrant I through which the coordinate
axes can be rotated to eliminate the cross
product term from the equation
14x% + 16xy + 2y* — 10x + 26,370y 17 =0
Do not carry out the rotation.

28. Find the sine and cosine of an angle in

Quadrant II through which the coordinate

axes can be rotated to eliminate the cross

"~ product. term from the equation

4::2—4xy+y2 —8\/§x—16J§y=0

Do not carry out the rotation.
The conic section in Exercises 17-26 were
chosen to have rotation angles that were
“nice” in the ‘sense that once we knew cot2aq,
or tan20. we could identify 2o and find sina
and coso from familiar trianiges.
In Exercises 29-34, use a calculator to find
an angle o through which the coordinate axes
can be rotated to change the given equation
into a quadratic equation that has no cross
product term. Then find sin and coso to two
decimal places and use Equation (6) top find
the coefficients of the new equation to the
nearest decimal place. In each case, say
whether the conic section is an ellipse, a
hyperbola, or a parabola.
29, x*-xy+3y?+x-y-3=0
30. 2x*+xy-3y"+3x-7=0
31, ¥ —4xy+4y2-5=0
32. 2x2 - 12xy +18y2 —49=0
33, 3x* +5xy+2y -8y ~1=0
34 2x* +7Txy +9y* +20x-86=0

| MULTIPLE CHOICE QUESTIONS I

1. coshx + sinhx

(a) e* () e*
2. coshx - sinhx = _—
@1 ) &
3. coshx coshy + sinhx sinhy = __ .

(a) cosh (x — ¥) (b) sinh (x + v)

©1 @ -1

@ -1

(c) e*

(c) sinh (x -~ ) (d) cosh (x + )

4.

10.

11,

12,

13.

14.

coshx coshy ~ sinhr sinhy
(a) cosh (x + y)

(b) cosH x=-y

d
— (sechx) =
o ( )
(a) sechx (b) tanhx
d
— (cosechx) =
I (cosechx)
(a) cosechx (b) coth2x
Jsinhx = + C.
(a) —coshx (b) coshx
Icosechzx = + c.
(a) —cothx (b) cothx
Jsechx tanhx dx = + c.
(a) sechx " (b) tanx
| —cosech cothx dx = + e
(a) cosechx (b) - cosechx

= |n(x+,/x2 -1),x 21
(a) sinh~Lx (b) cosh-lx

1 x+1

= = 1.
_—= 2‘"[::-1)’ x| >
(a) tanh~lx (b) sech~x
Domain of tanhx is
(a R (b) N
Domain of cosechx is
(@ R (b) R - {0}

Hm in2x j form.
it 0(cotx)s' is
0 oo

@ 3 ®) 1

(c) sinh (x - y)

(c) sechx tanhx

(c) —cosechx cothx

(c) hcoshx

(¢) cosechx cothx

(c) —sechx

(c) cothx

(c) coshx

(c) coth~lx

(c) Z

) Z

(c) o9

(d) sinh (x + y)

(d) -sechx tanhx

cosechx cothx

(d)
(d) —hcoshx
(d) —cosechx cothx
(d) tanh2x

— coth?x

(@

tanh—1x

G

(d) (:osechj‘x_
(d R - {0}

d N

(d) ===
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. 1 xt g
lim (tanx }* is form. 25. The eccentricity of —+<>=11ise = . _
X = 0 x . a b A
o 2_ 2 2 _ 2 ’ 2 _ 2 2 2
@ 2 ®) 1= (©) =0 @0 @ =2 O AL il G) .‘}a.—*—i-
0 a a ‘ a a
1 ici 7 I 2 = =
. xli_'_,nl @ *4,‘2)@675 s form. 26. The eccgntrlclty of 12x 27y 108 is ¢ .
5 5 13 13
@ 1= () 10 (©) 0 @ 0° @ % ®) 3 © 3 @ 1/—3_—
" . 2 — . ‘
- Directrix of y* = 10x is .| 27. Ax?2 + Cy + Dx + Ey + F = 0 represents a circle if .
@ x=-—§ (b) x=—;- (c) x = 10 d) x=-10 @A=C bA=zxC ©A=C%0 - (@A=-~C
2 \ : 28, xy = y2 - 5y + 1 = 0 represents a .
2
. Foci of %+—‘:—g=l are . (a) parabola (b) ellipse (c) circle (d) hyperbola
@ (0,7 ) @7,0) © (0, £4) @ (x4, 0 [ ANSWERS |
. Verties of xT'+!91=1 are . L @), 2. (o), 3. (@), 4 ®, . 5@ 6 () 7. (b), 8. (a),
' ‘; 9., 10.() 1L (®), 12 () 13 (), 14. (), 15 (), 16. (b),
(@ 3, 0) ® 2, 0 (c) (0, £3) @ ©, £2) | @ ®) ©) ®)
| 17. (@), 18. (@), 19. (@, 20. (c), 2L (o), 22 (a), 23 (b), 24. (c),
2 2 | . . d
. In x_z+%?=l the distance between center to focus is ¢ = . S \25. (@, 26, (d), 27. (c), 28. (d). ‘ '
a
(a) a* - b (b) b -a? (c) ya? - b? @ b -a°
2 2 W% N

. Asymptotes to %—%:1 are y
: a

b

(@ t~x ) +2x ©) £x @ 0
a b

2 2
. Asymptotes to !-2-—57=1 are y = . ' - '
A a® b : ‘

b a

(a) £ —x b) *—-x ©) £x 0
a b
2 2

. In T“z_z=l the distance between center to focus is ¢ =
a

i

(a) a* +b* (b) a*-5b* (©) Ja? +b* d \/az - b?




Curve Sketching

UNIT |

Curve sketching

>

Definition : ‘
Cartesian equation : Equation in the form fix, y) = 0 or y = g(x) or x = h(y) is called

Cartesian equation.

cal

@

2

Parametric equation : Equation in the form x = R¢); y = g(s) where ¢ is parameter are
led parametric equations.

. . :!_1
e x=day; x4yi=d4; yE——:
g x . ay. x“+y y 12

x=-2)(x+ . .
=(—Lﬂ are cartesian equations.
x

~

GRAPH OF CARTESIAN EQUATIOIﬂ

To sketch the graph of cartesian equation we have to discuss following points.
Intercepts :
For
x - intercepté iputy =0
y - intercepts : put x = 0
Symmetry :
We have to discuss three types of symmetry.

() Symmetry about X-axis : Given curve is said to symmetry about X-axis, if we replace
y by — y equation remains unchanged.

(i) Symmetry about Y-axis : Given curve is said to symmetry about Y-axis, if we replace
x by — x equation remains unchanged.

' (iii) Symmetry about origin : Given curve is said to symmetry about origin, if we replace
x by — x and y by — y, equation remains unchanged.

Remark : v

(i) If all powers of x are even powers, then equation is symmetry about Y-axis.

@) If 'all bowers of y are even powers, then equation is symmetry about X-axis.

(iif) If given equation is symmetry about K-axis and Y-axis both then it is also symmetry
about origin.

- =

79
(3) Asymptote :

Discuss asymptote for Cartesian curve,
Ans. @ .

Def* : A line is said to asymptote of the curve, if the perpendicular distance bgtween

points on the curve and points on the line tends to O, when curve goes aw
¢  There are two types of asymptotes. ‘

p(x)
—Z_g, where p(x) and q(x) are polynomials.

ay from origin.

(i) Vertical asymptotes : For the curve y =

Take g(x) = O then find values of x.
P _ Gtaxtax?y, 4 a,x"
q (x) bo + b,x + blxz + ..+ bnxll :
is horizontal asymptote.

(i) Horizontal asymptotes : For the curve y =

- If m = n then y=a—'"

n

If m < n, then y = 0 is horizontal asymptote.

L

If m > n, then horizontal asymptote is not possible.

Ex. 1. Find asymptote for the curve y ;x3 -3x2 - 2x.
Sol”. :
¢ Vertical asymptote : Take ¢(x) = 0
1 = 0, not possible
Vertical asymptote is not possible.
x~3x7 - 2x

*  Horizontal asymptote : i

y=
m=3n=0m>n
Horizontal asymptote is not possible. ,

£ m
q(x) _ '

«  First take p(x) = 0 and g(x) = O, then find values of x.

e Arrange abdve values in increasing order and make different intervalg.

(4) Sign of *y’ : For the curve y=

»  Check sign of y in above intervals. ,
Ex. 2. Sketch the following curve, OR Trace the graph of following, OR “Disscuss
symmetry, intercepts, asymptotes and sign of function for the following curve.
Hence sketch the curve. .
(1) y=x3-3x2+2x
Sol". :
y=x(x* -3x+2)
y=x(x—2)(x—1)

SPU, June-2012,

December-2012
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(i) ' Intercept :
— X - intercept : Put y = 0, we get.
O=x(x-2)(x—-1

are x — int.

— Y — intercept : Put x = 0, we get.

is y ~ int.

(ii) Symmetry :
~> Symmetry about X-axis : If we replace y by — y, we get
—y=x(x—2)(x'-1)
=—x(x-2)(x-1)
- Thus equation is change.
It is not symmetry about x-axis.
—> Symmetry about Y-axis : If we replace x by — x, we get
| y=—x(=x~2)(-x-1)
y=-xx+2)(x+1)
Thus, equation is change.
It ‘is not symmetry about y-axis. -
— Symmetry about origin : If we replace x by — x and y by — y. We get,
~y=~x(-x-2)(-x-1
~y==x(x+2)(x+1)
y=x((x+2)(x+1)
“Thus equation is changed.

It is not symmetry about origin.
(iii) Asymptotes :

x(x-2)(x-1
, 1
—> Vertical Asymptotes :

Here, y=

Take 1 = 0, which is not possible, so vertical asymptote is not possible,
—> Horizontal Asymptotes :
Here, m=3,n=0,m > n.
Horizontal asymptote is not possible.

(iv) Sign of ‘y’ :
- y=x(x-2)(x-1
Take : x(x=-2)(x~1)=0
x=02,1

=

+y¢
8

0 1 2

Intervals are (- =0, 0), (0, 1), (1, 2), (2, o)

Here y =x (x - 2) (x - 1)

If x& (—,0), then
y=(-ve)(—ve)(~ve)= y<O0

If xe(0,1), then

‘ y=(+ve) (—~ve)(-ve)=> y>0

If xe(l,2), then
y=(+ve)(-ve) (+ve) =y <0

If xe& (2, ), then '
y=(Hve)(Fve)(+ve)= y>0

xt -1
x: -4

(i) Intercepts :

2 y= [ spu,

X~intercept : Put y = 0
z -
0= xz 1
x° -4
0=x*-1
x=%1 aré x—int,

(ii) Symmetry :

2
=» Symmetry about X-axis : If we replace y by -y, we get —y= z -

changed.

It is not symmetry about x-axis.

YW~intercept : Put x = 0
-1 1

yE=—=—

-4 4

is y—int. . \

P
equation 'is
g cauation,

2_ 1 .2
— Symmetry about Y-axis : If we replace xby —x, we get y= (-2)" -1 X -1

equation is not changed.
It is symmetry about y-axis.
Calculus /2018 / 11

(~0*-4 x*-4’
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W.__ —
- Symmetry about origin : If we replace x by — x and y by - y, we get
2
-x)° =1
Lyt
: (-x) -4

2 .

-y= x4 equation is changed.
x" -4

It is not symmetry about origine.

(ifi) Asymptotes :

. -1

Here l)' = ;'3-::

Vertical asymptote :

Take x* ~4=0. ooxt=4

Horiiohtal asymptote :

Herem=2,n=2, . m=n

are vertical asymptotes,

l .
Then y=i=l is horizontal asymptote.
(iv) Sign of %y’ :
-1
-5 =
VRIS
. Take, x> -1=0 and x-4=0
‘Xt =1 : ooxt=
x=%1 _ S ox=t2
x=-2,-112
v ¢ -2 -1 1 2 .
[ Intervals are (— oo, — 2), (— 2, - 1). (" 1» 1)9 (l’ 2)| (21 °°)
’ y= x? -1
- Xt -4 _ . .
If xe(=00,~2), then y= o5 y5o0
+)
- If. xe (-2,-1), then y=(i'2 = y<0

If xe (-1,1), then y=-§—:—; = y>0

Curve Sketching
83
If xe(1,2) then y=-((i;- = y<0
If xe (2, o) then y=&=> >0
2
x=-2 Y x=2
s $ 4
] !
1 '
H !
: :
a :
! 1
E H
R e L LD -E ---------- ’1- -------- 'g ------------- +y=1
! 0.25 |
]
-/ |
. : ! .
‘ 72 S AR —X
i :
) 1
1 i
i |
] ]
] )
i ' ’
v v v

2 2
B ry=oine-y * 27

SPU, Nov. 2015, April-?.()lfs

Sol", :
(i) Intercept : \
X-intercept : Put y = 0 Y-intercept : Put x = 0
2

y=——— = [y=+1] is Y-int.

0 = 2 is not possible. = TC2)

X-intercept is not possible.
(ii) Symmetry :
— Symmetry about X-axis : If we replace y by — y, the equation is changed.
It is not symmetry about X-axis. '
— Symmetry about Y-axis : If we replace x by - x, the equation is changed.
It is not symmetry about Y-axis.
—> Symmetry about origin : If we replace x by — x and y by -y, the equation is changed.

It is not symmetry about origin.
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(iii) Asymptotes :
2
Y xt—-x-2
Vertical asymptotes :
Take x> -x-2=0
x-DE+1)=0
or are vertical asymptotes.
Horizontal asymptotes :
Herem=0,n=2 . m<n
is horizontal asymptote.
2
(iv) Signof %y’ : y=—5——
xt—-x-2
- x*-x-2=0
G-Dx+1)=0 % ) g

Intervals are : (= oo, — 1) (=1, 2), (2, &)
2

Here y= 34D

+)
If xe (-o0,~1), then E:()—(?) = y>0

If xe(-1,2), then y=—_ = y<o

)
()
If xe (2,), then y= y>
(CYRCY]
Y
4 4 4
* 1 )
—]
¥ v 4
x=-1 x=2

Curve Sketching ' : 85

(x-1(x+2) _x2+x-2
4 = r Y=
@ vy x(x—4) x2 —4dx
] SPU, April-2015, Navember-2012, June-20j I, November-2010
Sol™. : ' :

(i) Intercept : .
X-intercept : Put y = 0, we get 0 = (x — 1) (x + 2)

are X-intercepts :

Y-intercept : Put x = 0, we get y= E‘l())(2)

y=—v90|, not possible.

Y-intercept is not possible.
(ii) Symmetry :
Symnietry about X-axis : If we replace y by - y, equation is changed,
. It is not symmetry about X-axis.
— Symmetry about Y-axis : If we replace x by - x equation is changed.
It is not symmetry about Y-axis.
~> Symmetry about origin : If we replace x by - x and yby -y equation is changed.
It is not symmetry about origin.

(iii) Asymptotes :

- Here, y= %%%2_2

Vertical asymptote :
Take x (x —4) = 0

are vertical asymptotes.

Horizontal asymptote :

Here m=2,n=2 S om=an

1 . .
y=T = m is horizontal asymptote,
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(iv) Sign of A
(x=-D(x+2)

Here y=
x(x~4) ‘
Take x> - 1) (x+2)=0 and x(x-4=0
:
- D S— .
Intervals are (-0, ~2), (- 2, 0), (0, 1), (1, 4), (4, =).
) ()()
If —oo, — 2), th = 0
xe(. ), then y= 00 y>
(LGP)
If -2,0), th = = 0
x€ ( ), eny()()->y<
(@162]
If 0,1, th = 0
x€ (0, 1), then y= ()(_) = y>
(62162
If 1, 4), th = 0
xe(1,4), then y= ()() = y<
_HE)
If xe (4', o), then y———(+) sy =
Y x=4

>
>
>

v

D pn S NS R [0 ERT X
Y v
. x(x-4) } spu,
SR A Ty
Sol". :

(i) Intercept : N
. Xeint :Puty=0 weget0=x(x~4)

o are x—int. _
Y-int : Put x = 0, we get is y int.

April-20106
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(ii) Symmetry :
Symmetry about X-axis : If we repace y by —y, equation is changed.
It is not symmetry about X-axis.
Symmetry about Y-axis : If we replace x by — x, equation is changed.
It is not symmetry about Y-axis.
Symmetry about origin : If we replace x by — x and y by - y, equation is changed.
It is not symmetry about origin.
(iii) Asymptets :
x-D(x+2)

Here, y=
Ao

Vertical asymptotes : Take, x(x — 4) = 0 x=0 4
are vertical asymptotes.
Horizontal asymptotes : Here m = 2, n = 2 SLom=n

= —m is horizontal asymptote.

(iv) Sign of ¢’
Take, x (x —4)=0and (x - 1) x +2) =0

x=—2» 07 114 —3) -2 0 l 4 +Vw

Intervals are (— o, — 2), (- 2, 0), (0, 1), (1, 4), (4, =)

If x& (=oo~2), then y—E_;E—; =

If xe (-2,0), then y—E ;E ; = y<0
If xe(0,1), then y-—E ;E ;

If xe(l,4), then y-i ;E ; y<0
I xe (4, ), then y—-i ;t:; = y>0
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x=2 Y x=1
'y {; 4
21
- B i
- 2 -l 0 I
| |
v oo
x2 -
© y= x? -1
Sol™, :

(i) Intercept :
Xint : Puty = 0, we get O0=x% -4

xt=4 are x—int.
. _0-4 - N
Y-int : Put x = 0, we get y= o1 = is y-int.

(ii) Symmetry :
Symmetry about X-axis : If we replace y by - y, equation is changed.
It is not symmetry about X-axis.
Symmetry about Y-axis : If we replace x by — x, equation is not changed.

It is symmetry about Y-axis.

Symmetry about origin : If we replace x by — x and y by — y, equation is changed.

It is not symmetry about origin.

(iii) Asymptets :

x2-4
Here, y=
Y x2 -1
Take x%~1=0
x* =1

S are vertical asymptotes.

Also here m =2, n =2 m=n

y = 1 is horizontal asymptote.

Curve Sketching

(iv) Sign of %y’ : E
Take, x*~-4=0 and x?-1=0
=4

x=%2

xt=1
x=t1

x=-2,-112

Intervals are (- =, - 2), (-2, - 1), < L, 1), (1, 2), 2, L ,

H _x2-4
ere )’—‘—'—xz_l /_
+ -
— oo, — 2), thi == = y>0)
If x€(-~o,-2), then y ) y
' )
i -2,-1), th === = y<0
If xe(=2,-1), then y @ ‘y
If xe(~1,1), then y=-§—% = y>0
If x€(1,2), then y=£——) = y<0
#
+)
If xe (2,), then y=-— = y>0
(2,) bl
x=-1 x=1
4, 4
\J
i
'y=11----------------' ----- d----i-ww--- --------------------- »
* B NS | (TR >
:.
!
* v Y

Calculus / 2018 1 12
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) yEtIE-D_x42x-3
x(x+2) x% 4 2x

Sol", :
(i) Intercept :
X-int:Puty:O, we getOé(x+3) x-1

are x-int,

Yeint : Put x = 0, we get y:==

not possible.

y-intercept is not possible.
(i) Symmetry :

Symmetry ‘about X-axis : If we replace y by - y, equation is changed.
It is not symmetry about X-axis. _

Symmetry about Y-axis : If we replace x by - x, equation is changed.

- It is not symmetry about Y-axis,

Symmetry about origin : If we replace x by - x and y by - y, equation is changed.
It is not symmetry about origin.

G D
0

(iii) Asymptotes :

‘ (x+3)(x-1)
x(x+2)

Take x (x + 2) = 0

are vertical asymptotes.

Also herem =2, n=2 S m=n
1
== = =1} 1is horizontal asymptote.
y=1 ymp

(iv) Sign of ¢y’ :
(x+3)(x-1
x(x+2)

Take, (x+3)(x-1)=0 . and

x(x+2)=0
razai]

Intervals are (= o, ~ 3), (- 3, - 2), (= 2, 0), 0, 1), (1, o)

" Here, y=

Here, Y=

Curve Sketching
. -9
Here y=w
x(x+2)
If Xx€ (= o0, — 3), th =-w
. en y Ry = y>0
If xe(~3,-2), then y=E) 0
oo T
)
If xe(-2,0), then y=—-""2 = y>90
O® 7
=)
If x(0,1), th =
x€ (0,1), then y ") = y<0
(+) (+)
If xe(l, ), th =22
T ow T
x=-2 Y
4 1
2\ """""" i /*.’F
T N o 0 T T X
|
: '
x3 o
® Y=g
Sol”, :

(i) Intercept :
X-int : Put y = 0, we get 0= x}

are x—int. . y= % = :(_)I = [6__] is y-int.

(ii) Symmetry :
Symmetry about X-axis :
It is not symmetry about X-axis.

Y-int : Put x = 0, we get

If we replace y by — y, equation is changed.




Calculus

92
» ' Symmetry about Y-axis : If we replace x by - x, equation is changed.

It is not symmetry about Y-axis.
Symmetry about origin ; If we replace x by — x and y by - , equation is not changed.

It is symmetry about origin.

(iii) Asymptotes :

Here, y= —fa——]
Take x> -1=0 nox?=1
are vertical asymptotes. )
"Alsoherem=3,n=2 Som>n

Horizontal asymptote is not possible.

(iv) Sign of ¢y’ :
Take,'x’—O and xt=1=0

Intervals are (— o, — 1), (~ 1, 0), (0, 1), (1, o).

If xe (—oo,—1), then y=-§—;—;— = y<0 x=4;1 }: x?=l
‘If xe (—1,0), then y= % = y>0 %
i
If xe(0,1), then y= o yco |
| ) . =} DN *X
If xeq(, oo) then y= g; = y>0 E ,
@ y=G=DE+D . , , P
Sof®. -,(x—‘ D(x+1)72 v v v
(@) Intercept :
Xdnt: Puty =0, - Y-int : Put x = 0
L 0=(x-2) (2 +1) L£2M -2
sk e2= 00 120 T,
» 1S y-intercept,
sox=20r x2==1 not possible.
. E is x—intercept.

Curve Sketching » . )
M =
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(ii) Symmetry :
Symmetry about X-axis : If we replace y by - y, equation is changed.

It is not symmetry about X-axis.

Symmetry about Y-axis : If we replace x by — x, equation is changed. ' ;
It is not symmetry about Y-axis. ' ‘

Symmetry about origin : If we replace x by ~ x and y by — ¥, equation is changed.
It is not symmetry about origin. : :

(i) Asymptotes :

(x 2)(x*+1)
(=1 (x +1)?

Take (x-D(x+17=0 ‘
‘= x—-1=0,(x+12=0 = x=1-1"

are vertical asymptotes.

Alsohere m=3,n=3 Som=n

1 N '
y ; = |y=1 }1s_hon,zontal_asymptote,_

(iv) Sign of %y’ :
Take, (x-2)(x*+1)=0 and (x-D(x+1)? =0

x=2 o [x=1-1]
it

&
*

v

=3 -1 1 5 +o ]
Intervals are (- =, ~ 1), ¢ 1, 1), (1, 2), @, =)
If x€(=w,~1), then y-(( ))((+)) =°--x?._9-,,._
If xe(=11), then y—z_—;é—;- =y >o. | - .
If xe(1.2), then y—: ;::; = y<0
If xe(2,c), then FET;% =
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x=]
y }
T i
2

l | /-“—"—-T’ r=

) -2 4 0 1 /2 — X
|
v VJV v

| GRAPH OF PARAMETRIC EQUATION |

I e ¥ = t ) = Wi Vi 0 ( ' Cuss
1 . . i .. q X f( ) g(t) 9, (] ha e t is

1. Intercept : X-intercept and Y-intercept.

2. ly*lxtept to the curve : Extent to the curve is region of the curve on X-axis and
-axis. ’

3. Tangent parallel to the ctirve : For the curve x = f{r); y = g(®.

We know that slope of tangent = EX

| dy . .
) If (—) =0, then tangent at pt p(x, y) is parallel to X-axis.
P (x,y)

. &
2 K (—-—) ——>co then tangent at pt p(x, y) is parallel to Y-axis.
_ P (%, y)
4. Asymptotes to the curve : For the curve x = f®), y = g(t). There are two type of
asymptotes for parametric' curves.

(i) Asymptotes parallel to axes : Find limiting value of parameter of ‘¢’ for which

any one variable x or y is finite and the other — eo. Finite value of x and y
are called asymptotes parallel to axes.

(i) Oblique asymptotes : Find limiting value of parameter of ‘¢ for which both
 variable x — % oo and y St o, then there is a possibility of oblique asymptotes.

If obiique asymptote is exists, then it is in the form where
= lim dy

_lim ., _
=t 5 c=" (y —mx).
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Ex. 2. Find tangent parallel to axes for the following.
1) x=22;y=3t

Sol", :
4y
bH_d _|3
dx dx 4¢
dt
dy

Here, —-=—3-¢0, VteR
dx 4

Tangent parallel to X-axis is not possible.

- Alsoi}i:—?’— — oo, if t=0
dx 4

Fort=0,x=0,y=0
Thus we get, tangent parallel to Y-axis at point (0, 0).
SPU, April-2015, June-2012, Deeember-2014, Scplcml)cr-ZOls@

(2) x=cos’@; y=2sin0
Sol". :
Here x=cos20; y=2sin0

d
ix_ =-2cos0sin® and -(% =2cos0

dy _ 2cos6 -1
dx —2cosOsin0 sinb
dy -1
Here, —=——+#0, V8eR
% 2 sin® ‘

Tangent parallel to X-axis is not possible.

dy -1 .
Iso —=———= 00 ifO0 > nn,ne Z
Also =56

For 6 = nm, x=cos? nt=1; y = 2sin nm = 0

Thus we get, tangent parallel to Y-axis at point (1.0).
(3) x=4t>-4t, y=1-4¢
Sol". :

dx
Here —=8t—-4
dt




o _ Calculus

Q:—St
dr .
dy -8 -2t 2

de 8t—4 2-1 1-2¢
Cleatly =2 L, 0,ift=0.
dx 1-2

Fort=0,x=0,y=0
Tangent parallel to X-axis at (0, 0).

Also,

D if1-20=0, e if =2

dx . 2

For t='l. x=4-l—4'—=1—2=-l.
.2 . 4 2

And y=1- -Z=l—1=0
. Thus we get tangent parallel to Y-axis at point (- 1, 0).
Ex. 3 : Find extent of following.

D x=2¢2,y=3,¢te R
—. “We know that,

te R te R
?20. 3te R
S22 20 yeR

(2) x=cos?0, y=2sin8, 0 € R
— We know that
' — 1< cosb <1

~ 0<cos’6<1 -252sin0s52

Hence 0<x<1, - 2; y <2 are extents to the curve.
~Give curve is bounded.

-1<sin6<g1

& Theorem-1 :

If a curvé_‘ given by x = f(1), y = g() and both x and ¥ get numerically large as ¢ approches
some number say ‘a. Then an oblique asymptote to the curve if it exist is given by

- . _ lim (dy < lim
Y = mx.+ ¢, Wwhere m_"’a(Zx_)' €= 5 q(y—mx),

SPU, April-2016, Nov. 2015, April-2015, December-2014. September-2014.
November-2013,  June-2012, November-2012. December-2012, 2011

June-

SPU, June-2011
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Proof : _
We have given that,
Ift > a,thenx = o and y = oo,
By definition, there is a possibility of oblique asymptote. _
If it exist then it is in the form y = mx + ¢.
Now we find m :
We know that asymptote becomes a tangent to the curve at infinity. We know that
m = slope of tangent to the curve.
= slope of asymptote at the infinity
dy

= —= at infinity
dx .

dy X=> 0o»
at

dx
—-éy—ift—)a

.
™=y I—‘)na(%)

— Now we find ¢ :

We know that perpendicular distance between any point p(x, y) of the curve to the line

. |mx—-y+c
mx-y+c=0is

m® +1
We know that distance

fmx-y+c|
Jm? +1

Thus =Y +cl
Jmt +1

lim Imi-y+ec|_

-0 at infinity ie., at x 9> o and y — oo

=0,ift > a

Thus 0

A N

hm ' '
=, ialm}c—y+¢:|=0

lim =
D pyg Mm-y+tc=0

lim
= = o
€=ty qYy—m

Calculus /2018 / 13
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Ex. 4 : Find asymptotes for the curve given by x=t+-17; y=t-1
. t

2’
SPU, November-2013, June-2012

Sol", +
Asymptote parallel to axes :
Here x=t+ti2, y=tftl2, te R
Here, we can not find any value of ‘¢ for which one variable x or y is finite and other
is infinite. ,
Asymptote parallel to axes are not possible.
- => Oblique asymptotes :
Ift—)O,thénx-—>ooandy->oo
Also, If t — oo, then x — o and y — oo
There is a possibility of oblique asymptote.

If it existlthen it is in the form I y=inx+ Cl v (1)

— Fort—0:

. ‘ d 2
We know that 9_=1_£=1_2t_3 and ——}i=1+'§=1+2f'3
dt 3 dr t

dy _1+2t73 42
dx 1-2% £ -2

_Y lim Q
M =50 a
_ lim [£+2
t—0 t3—.2' ’
_0+2
T 0-2

U lim _
Also, ¢ =, 50 (y — mx)
. lim

t—>0 O +x
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_ lim _1 !
C—t,_l_:)‘.o (l t2+t+t—2-J
= tll;no (29

By equation (1)
y=-x+0

is oblique asymptote.

— For ¢t — o

- lim Q

I—-)ocdx
_lim [£+2
toee |3,
142
_ lim f
“t-—-)ool 2
3

1+0

i}
[}

@

Also, c=,l_’)moc (y—mx)=yl_l.>moo O0-x
lim 1 1
=’_)°°[t—t—2—t-t—2)

_ lim Z2
=t —>ec tZ
=0

c=0

= | y=x/| is oblique asymptote.

Hence are oblique asymptotes.

3k

R

=]
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. etri i i) Circle (i) Ellipse (iii) Hyperbola (iv) Parabola. ==
Ex. 5 : Obtain parametric equation of (i) Circle (ii) Ellipse (iii) Hype! +v) Parabola :
Sol® ¢

We know that equation of parabola is y2 =4ax.
@) Circle :

— g2 2 2

We know that equation of circle with centre (0, 0) and radius ‘7’ is given by x% + y* =r? Let x =aqt? then y 4‘12“; )
’ i = 4qa°t

2 2

= 'x'z' + zi' =1 : oy =2at
r?
Thus [x=ar?, y=2at|
r r ; Which is parametric equation of parabola.

. . Ex. 6 : Find parametric equation of followin
Let f:cose, l=5m9. which satisfies above equation (1). P eq B :
r r ’ . aQ x4+ y2’3 = q2/3 SPL, Apnl 2015, Dec.-2014, June-2011, Nov.-2010

[x=rcosB, y=rsin8 | . (5)2/3 +(l)z/3 B

Which is pa.ramemc equation of circle. a
(il) Ellipse :

1372 137
: . . X2y x +[2 '
We know that equation of ellipse is —+—b7=l = al a =1 - e (D)
’ 2 2 1/3 1/3
x + X =1 2 Le ol - 0 Yy : : gt .
adl b 5 e (2) t 2 =cos0, 2 =sin®, which satisfies equation (1)
Let 1‘-=cosO, —i—:sine which satisfies above equation (2) : Then |x=acos3 8,y =a5i"39|
a .
[%=acos, y = bsind | @ Jr+y=va SPU, Nov.-2015, Sept. 2014, Nov. 2013
Which is parametnc equation of ellipse. = xl2 4 yli2=gli2 -
@ii) Hyperbola : N 112 o |
2 2 ... (—) +(1J =l
We know that equation of hyperbola is %—i;:l ‘ :
a

(= -(2] - L S T "‘} I
)

»Y ) : :
a

Let f—,: secO %:tane which satisfies above equation (3). Let, ( -sme which Satlsﬁes equation (2) o
a _ . . ‘

ﬁlk

TN

Ix:ésecﬁ.y=btan9| =sin?0

SR
8 |«

which is parametric equation of hyperbola. l 3 ]
) x=acos*9, y =asin*0
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Ex. 7 : Sketch the curve given by followmg
1. x = asecO, y = ptanp
(1) Intercept :
x-intercept : put y = 0, we get
' 0. = btand
tan. = 0
sin@

_— =

cos@
sipe =0
i O=n,ne Z
x = asec (nm)

are x-intercepts.

y-intercept put : x = 0, we get

= bsecO
secO = 0

l -
o =

oo 1= 0, not possible
So, y-intercept is not possible

(2) /Extent :- we know that -1 < cosd
-1 2 sech 2.1 ' ’

secO 2 1 ) sech € -1
asec® 2 a asech € —q
=
Also
tan € R-
. Y dy . .
dy _ar bsec?o
3) Tangent parallel axes : —- =4t . 7% Y
@) Tang o paratlel axes t I dx  asecOtan®
d
1 cosf b
. x -

b
= —X
a

&l&

cos® sin® asin®
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Tangent parallel to X-axis : we know that
b o i

T 7 asin®
if which is not possible

So, tangent parallel to X-axis is not possible.

’

Tangent parallel to Y-axis : we know that

% = o if as:)ne =
if -asin® = 0,
if sin@ = 0,
if@=nn,ne Z
S x = asec .y = btan®
= asec(nm) = btan{(nm)
x=%gq y=0

So, we get tangent parallel to Y-axis at (a, 0) and (-a, 0).

(4) Asymptotes :

Asymptotes parallel to axes :
Here we can not find any limiting value of 0, for which one variable is finite and otier

is infinite. Therefore asymptotes parallel to axes are not possible.

Oblique asymptotoes :

fim T then x — oo and y — 0. So there is apossibility of obllque asymptotgs

If t—-)(2n+1)

It is given by
y =mx + C

lim dy
where, m = ,__,(2,,+1)_( ]

lim . b .
=t——)(2n+l)—2- asin®
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: ) So, x = 1 is x-intercept.
: =¥ ) y=heox i : x = 0, we get
= T ,V\TX / y-intercept put : x ' e g
asin (2n +1) — .
2 S //' 0 = cos?0
b -a \ < a T
= - X 8= 2n+)—=, neZ
a(xl /, -7 o~h ( 5
’d = x
- ®
: ~ = 2si — =x2
m=:!:£ : / ~ Soy . 2sm(2n+l)2
a X=-a X=a
; fm -
Al c't—>(2n+1)§ - m So, y = + 2 are y-intercept.
Jim , b (2) Extent : We know that o
Trsenenz Ok g aseet ~1<cosd <1 ~1<sin0 <1
. 0 <cos?0 <1 = -2 2sin6 £ 2
lim b(sin@F 1)

s

= t—)(2n+l)—2- cosO

_ lim 1t bcosO
"t—)(2n+l)§ —sin®

c=0

y=mx+c

b . .
= |y==% - x| is oblique asymptotes.

2. x = cos20, y = 2sind
(1) Intercept :
x-infemept cputy =0, we get
0 = 2sin@
sin@ =0 . -
S 0=nm,ne 2

Now.X = co0s20 = cos? (n®)

=1

(3) Tangent parallel to axes :

dy _ 2cos® -1

dr  —-2cosBsin® sin@
Tangent parallel to x-axis : we know that

d

ly o | . ' .
= =0, if Eﬁ =0, 1ie. not possible

So, tangent parallel to x-axis is not possible."

Tangent paralle to y-axis : We know that

% -3 o, if ;;::_0 - oo,
ifsin@=0,if0=nr,ne Z
So x = cos20 y = 2sin@
= cos¥(nm) = 2sin(nm)
x=1 E y= 0:'

So, we get tangnet parallel to y-axis at (1, 0).

Calculus / 2018 / 14
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(4 Asymptotes : '
Asymptotes parallel to axes : ¥
ﬁere we can not find any limiting value 02
of 8, for which one variable is finite and other
is infinite. Therefore any asymptotes parallel
to axes are not possible, = 4 .

Oblique asymptotoes :

There does not axist any value of 0, for

which both variable x — ec and y — o (02

oblique asymptotes is not possible.

3. x=4t2—4¢, y=l—4t2:

(1) Intercept :
x-intercept : put y = 0, we get
0=1-~472
42 =1

So, x = ~1 and x = 3 are x-intercepts.
y-intercept : Put x = 0, we get,

0=4r2 -4

0=4t-1)

Cor t=1

y=1-0 y=1-4

y=1

So,y=1and y = -3 are y-intercepts.

Curve Sketching 107

(2) Extent : We know' that

@2-1220 220
= 42 -4t+120 = -42<0
= 42 - 4> - = 1-42<1

= [x2-1] = [y<1

(3) Tangent parallel to axes :

dy ~8 -2

Tangent parallel to x-axis : We know that

dy . =2t
‘Z=0‘f 2t~1 =0
if -2r= 0,
ift=0
So, x = 42 - 4¢ y =1-42

So, we get tangent parallel to x-axis at (0, 1.).
Tangent parallel to y-axis : We know that

gz—)oo, it =% - oo,

dx 2t—1
if2t-1=0,
if2=1, |
ift:l

2

1 1 1

_4l2]-4]= =1-4|=
o) | e

=1-2 =1-1

So, we get tangent parallel to y-axis at (-1, 0).
4) Asymptotes :
Asymptotes parallel to axies :
Here we can not find any limiting value of ¢, for which one variable is finite and other

is infinite. Therefore asymptotes parallel to axes are not possible.
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108 ny y-intercept : put x = 0, we get, .
Oblique * asymptotoes : _ 0 =2+4
If £ — o, then x — o= and y —> e=. So there is apossibility of oblique asymptotes Which =t(t+4)
is given by s 1 =0 or t = -4
y =mx+c¢ 5= ¥ 6+3¢-4
-y—O sy =16+ 3¢
where, m = im &
! T t—ro0 | dx K y= 4
lim (=2 ' So, y = 0 and y = 4 are y-intercepts.
Tt->ee |21 (3) Extent : We know that
2
3
- lim =2 @¢+27%20 - (H'z'} 20
t—eo | (2-1/1) .
, ; 3
_. lim -2 s P+ 4t+420 tz+3t+220
Tt el x=-1 Y
3
. 2 g 2 -_——
) , s Pr4t2-4 Lo rHk2-o
=2-0 . y=t '
EEE
__ \ . x>-4 o yz-«z
-1 0 3 X .
Also, ¢ = ,!_i_r)n & — (3) Tangent parallel to axes :
l dy _2+3 |
=, MM Q-4 a4 —an) dx  2u+4 _ ,
-2
=1- e \ Tangent parallel to x-axis : We know that
¢=oo | which is not passible, & _ oir 243 o : . -
So, oblique asymptotes is not possible. dx T u+4 |
4, x=02+ 4 =7
A y=re - ' if2+3=0,
(1) Intercept : , . : ’
x-intercept : Put y = 0, we get, 2t =3, .
0=14+3 if,=_2, S R
O=t(+23) ' ’ 2 o
..t =0 or t =-3 So, x=(%]+4(——;-) y=%+3(-%)
Lox =9+ 4(=3) ' - ,
=15 9
So, x = 0 and x = —~3 are x-intercepts. .
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So',‘ we get tangent paralle] to X-axis at —-12, 22 - So, oblique asymptotes is not possible.
4 4/ x=4
Tangent parallel to y-axis : We know that ' V
- dy o 243
== = oo, if oo
dr . 244
if2t+4 =0,
if2r=-4, . -~ / = < x
lf =~ 2 ' ('41'2)'\‘
So x=44+4(-2 Y =4+ 3(=2) . (_;5,_5)
: So, we get tangent parallel to y-axis at (- 4, -2).
(4) Asymptotes ; -
Asymptotes parallel to axies 5. x=t+1, y= %{
~ Here we can not find any limiting value of t, for which one variable is finite and other
is -infinite. Therefore asymptotes parallel to axes are not possible. (1) Intercept :
Oblique ésymptotoes : ' x-intercept : Put y = 0, we get,
If £ 5 oo, then x — oo and Y = oo, So there is a Possibility of oblique asymptotes which 0= 3
is given by : t-4 ,
' Yy =mx+c S 3t=0
' . dy) St =0
= lim {22 .
where, m't—)oo(dxj » N =
) 3 So, x=1is x-intercept.
lim [2t+3 lim t[Z +—t{, 1 y-intercept D put x = 0, we get,
Tt 00l e d T toree [ 4]— 0 =t+1
24—
t oot =1
— -3
m=1 oy =T3
~ lim _
Also, ¢ = M0 (- my) -2
= lim 2 = lm o 5
= e (P3¢ —_4z) = D .
= = is y-intercept.
¢==-c | which is not possible. So. y 5 sy P
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(2) Extent : .
te R | te R

(3) Tangent parallel to axes :
L _¥-n-¥% _ -1
dx - (t-4) (t—4)?
Tangent ‘phréllel to x-axis : We know that

‘d—y'OV R
ax 2 Ve

So, tangent parallel to x-axis is not possible.
Tangent prallel to y-axis : We know that

LN if —12_
de " T (g -4y '
if(t—4)2=0,
ift-4=0
if t = 4,
: 3
So, x=t+1 =
Y =i
=4 4+ 1 . =£
) 0

So, tangent paralle to y-axis is not possible.
) Asymptotes :
Asymptotes parallel to axes : Clearly
If £ — 4, then y = o and x — Ssox=5is asymptotoe parallel to y-axis.
.Alsoift—éoo.thenxﬂeoandy—>3 '
oy ¥ = 3 is asymptote parallel to x-aixs.
Oblique asymptotes : ) .
Here we can not find any limiting value of 1, for which both X => e and y — oo,
Oblique asymptote is not possible.

Ex. 8 : Express the following in parametric form using the givén substitution. Then sketch
the curve.
1. 2-2xy+32+y=0,x~-y=t
Solution : 2 - 2y +y2+y=0 A |
= (x—y)2+y.=0 Also, x -y =t

2
'2+),=0 > X+ —t

(1) Intercepts :
x-intercept : put 'y = 0, we get 0 = ¢ ‘ o |
x=0
So, x = 0 is x-intercept.
y-intercept : put x = 0, we get
0=t(-1

t =0 or ' t =1

| - [r=-1]
Sb,y:Oandy:—larey—inter’cepts.'» '

Calculus /2018 / 15
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2

)

Extent : We know that

1
t——
[ 2)220
. 1 2
-lt——| <0 2
( 2) t°20
2 Neo
= ‘— t -t+-4— . . = __tzso
: 2 1 .
= - +1--50 4 |ys<o]
t-rrsl
4
xS-l—
4
Tangent parallel to axes :
dy _ =2t
dx  1-2¢

Tangent parallel to x-axis : We knowt hat

D0 ifa=0ifr=0
dx

So, [x=0| and [y=0]

Sd, tangent parallel to x-axis at (0, 0)

Tangent parallel to y-axis : We know that

dy o —2t
- oo if —) oo,
- lI—Zt
if1-2t=0,
if 2t =1,
1
.ft="’
i > L
1.1 y=-1
So,,vc-2 3 4
1
Xt —
4

So, we get fangent parallel to y-axis at (

)

Curve Sketching 11

(4) Asymptotes :
Asymptotes parallel to axes :

Here we can not find any limiting value of 1, for which one variable is finite and othe;
is infinite. Therefore asymptotes parallel to axes are not possible.

Oblique asymptotes :
Here if x — oo, then y — e and y — oo,

So, there is possibility of oblique asymptotes which is given by
Yy =mx+c

. dy
_ lim 22
where, m = t—)oo(dxj

_ lim [ 22
t—>eo{1-2¢
lim —2

t—oolt(l/t~2)

[m=1]

Also ¢ Bm () gy = Nm oy

t—> o0 t— o0
='tl_')m°°(—t2—t+t2)

¢=eo | which is not possible.

y




2. 2422y +y2+x=0, x+y=t

Solution :
ey +y2+x=0

= (x+y)P}+x=0
2 4x=0 = —tt4y=t

Also, x +y=1t

x=-—t = y=t+1

-
(1) Intercepts :
x-intercept : put y =0, wegetOd=1(l+1
L ot=0 or t=-1
x=0 x=~1
So,x=0and'x = -1 are‘x-intercepts.
y-intercept : put x = 0 we get
0=-12 s =0

is y-intercept

(2) Extent : We know that

1 2
1220 (z+—) 20
2
250 P+t+-20
x<0 KX yz_l
4
(3) Tangent parallel to axes :
dy _ 1+
dx —-2t
Tangent parallel to x-axis : We know that
dy . L+ 2
— =V, f =
_ . ' -2
if1+4+2t=0

17
Curve Sketching 17

if2r=-~1,

ift=—~]—
2

| —

and | y=-—

| -

So, | x=—

1 1
So, we get tangent parallel to x-axis at‘(—z.—z)

Tangent parallel to y-axis : We know that

D e #2 ifr=0,
dx - 2

So, [720] and
So, tangent parallel to y-axis at (0, 0).
(4) Asymptotes :
Asymptotes parallel to axes :
Here we can not find any limiting value of ¢, for which one variable is finite and other
is infinite. So asymptotes parallel to axes are not possible.
Oblique asymptotes :
If t = %oo, then x — oo and y —> oo,
So, there is possibility of oblique asymptotes which is given by

y = mx + c, where : y
o him [9 ' '
m_t—-)oo(dx) \

_ lim [t(/e+2) \ .
Tt -2t =1 0 . y

=-1 S ,
Also ¢ = MM (o limoy @) : .

{—> o0 t =00

= tl_i_)’""m.(t+tz ~1%)

which is not possible.

So, obliqhe asymptotes is not possible.
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®  Definition : Equation of tangent and normal :

(1) Equation of tangent to the curve at point p(x),y) is y-~ N =(‘—1¥-J (x—x)
, dx '
r

1
E—(X-»ﬁ)-
dx (4

Ex. 9 : Find equation of tangent and normal to the parabola y* =4ax at the point ¢.
SPU, April-2016, June-2012, Dec. 2012

(2) Equation of normal to the curve at point p(x, y) is y—y =~

Sol", :
Given curve is y2 = 4qx
— Here, at ‘' point means at point p (ar2, 2at).
Now, y? =4ax

dy
2Dy
= e
dy 2a

= 3

—>  We know that equation of tangent to the parabola at the point p (at?, 2ar);

d
Y=y =(£Jﬁ (x-x)

y-2at=%(x—at2)

x
y—2at=?—at

y=2+at| which is equation of tangent.
t -

— We know that, equation of normal to the: parabola at.the point p (ar?,2at) is

-1
y—}’l'—‘T(x"xl).
dx J,

Curve Sketching . 119

1
—2at = = —— (x — gt?
y a l/t(x at*)

y-2ar=—t(x-ar?)
y—2at=-—xt +at3

o Ly=2at—tx+atq which is equation of normal.

yl

2
Ex. 10 : Find equation of tangent and normal to the ellipse _x_z_ + o
a

Soln, :

=1 at (acos0, bsin0).

December-2014

SPU, November-2015,

H Xt g2
ere given curve is — + <5 =1
& a® b
Differentiate with respect to x,

2x 2
2 ydy

— At pt. p(acos8, bsin®),
QJ __acos@b?
{d

_ beosH
dx bsin® a? asin@
We know that equation of tangent to the ellipse at p(acos®, bsin®) is
dy
-yn=|—-| (x—-x
Y=n ( dx]p( 1)

bcosO

asin®
asinOy — absin? 0 = — bcosOx + abcos? 6

asin®y + bcosOx = ab (sin 0 + cos? 6)
bcosBx + asinBy = ab

y —bsin® =~ (x —acos9)

cosOx + sin Gy =1
a b

— We know that equation of normal to the ellipse at p (acos®, bsin€) is

which is equation of tangent.’

y—Yx=“&_>,—(f"xl)
dx i 4
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y —bsin® = a—s:—:-'s% (x - acos®)

bcos@y — b? sinBcos® = asindx ~ a®sinBcos 0
bcosBy — asinx = (b* — a?)sinBcosd

| g
sin® cos®

_Definition : Cycloid :

which is equation of normal.

. ’%‘Cycloid is a path traced by a fixed point of a circle when circle rolls along a straight
line without sliding.

Y

A

‘®  Theorem-2 :
Obtain parametric equation of Cycloid.
OR Prove that a cycloid obtain by rolling a circle of radius ‘a’ is given by
x=a(0-sin0), y=a(l —-cosB)
SPU, April-2016, November-2015 April-2015, November-2013
Proof : Y ' .

If a circle with centre C and
radius ‘a’ rolls along X-axis as
shown in fig.

P(x, y
At starting, fixed point P is at 8 ¢
origin 0. Let P(x, y) be any Q
point on cycloid. - o g X

Rotate radius CP through angle
0 as shown in fig, |

Curve Sketching
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Draw CN perpendicular to X-axis, PM L X-axis and PQ LCN, CN = PC = a.

We know that arc Jength PN = a0 (.
Also from right angle APCQ,

CcQ _CQ

50 = —=—

a

[Ca=aeot]

and sinG:E-g lPQr:asinGl
qa

Also from fig. ON = arc length PN = a0
From fig.

= OM

= ON - MN
ad - PQ
af - asin@

x=a(0-sin0d)

arc length = radius X angle.)

Also,
y =M
=CN -CQ
= a_- acosd

E: a (1 - cos6)

Hence, x = a(® - sin@), y = a (1 — cos8) arc required parametric equation of cycloid.

Ex. 11 : A circle of radius ‘a’ rolls along a line. Prove that the path traced by a point on the radius

Sol", :
If a circle with centre C and radius ‘a’
rolles along X-axis as shown in fig.

At starting fixed point P is on Y-axis.
Let P(x, y) be any point on cycloid.
Rotate radius CA through angle ‘0.

Prove CN.L X-axis, PML X-axis

‘b> units (b < a) from the centre is given by x = a0 - bsin®; y = a - bcos0.

1

(b<a)

and PQ LCN.Here CN=aq, CP = b, *
CA = a.

We know that arc length AN = 40

(*+ arc length = radius X angle)

From right angle APQC, we get

cosf = «Q
b
CQ = bcosH

Calculus / 2018 / 16

sin@ = —12
b
PQ = bsind
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— From fig. ON = arc Jength AN = :
From fi g a8 Ex. 13 : A circle of radius 3 units rolls along a line without sliding. Prove that the path
g. traced by a pt. on the radius 2 units from the centre is given by x = 30 - 2sing,
x = OM . Also, Y = 3 = 2co0s0. v w
x = ON -~ MN y= PM Soln. : T )
=ab - PQ = QN Here,a =3, =2
=a9—-bsin6 =CN—CQ b < a
, Sy = a - beosd If a circle with radius a and centre p C
= Hence, x = 40 - bsinG; y = g - peosg are required equation. C rolls along X-axis as shown in fig. - _ Q
. : . At starting fixed point P is- an '
Ex. 12 : A circle of radius ‘a’ rolls ajong X.axis prove that the path traced by a point on Y-axis 8 P DR— Iv}\r:f »X

the radius b unit (5 > a) from the centre is glven by x = a0 - bsinG, y = q - beoso,

Sol". :
If a circle with centre C ang radius ‘a’ rolls along X-axis as shown in fig.
At starting pt. P is on Y-axis, ' Y
Let, P(x, y) be any pt.-on cycloid. T

(b>a)
Let rotate radius CA through

emgle ‘0’. Draw _(_‘,‘—N.L X-axis,
PM L X-axis. PQLCN. Here
CN=a,CP=bCA=a . &) C
We know that AN = af. :
(arc length = radius X angle) o / M N
From right angle APQC, we say that,

0=—= sinf=—=
cos 5 Sin p |

From figure ON = arc length AN = ¢8.
From right angle A PQC

\4X

x = OM y =PM
= ON - MN = QN
=af - PQ =CN - CQ
='a0 — bsin® = a - bcosH

Hence, x = a0 — bsin® and y = a — bcos® are required equation.

Let P(x, y) be any point on cycloid.

J'.

Draw CN L X-axis, PM 1 X-axis and PQLCN. Here CN = a, CP = b, CA = a.

Rotate radius CA through angle 8.

We know that, arc length AN = 48 (- arc length = radius X angle)
From right angle A PQC, '
cQ

6=—=
cos b

From figure ON = arc length AN = 40

PQ

sinf=—=
: b

From figure

x =OM y =PM b
= ON - MN = CN - CQ
= AN - PQ

— Hence, x = a® - bsin®, y = a — bcosO are required e.quation.

Here,a=3andb=2-

x=230-2sin0 |, y =3~ 2co0s0
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124 , Curve Sketching
i h L2-3 SPU, April-2015 : ; " ¥
Ex. 14 : Find asymptotes to the curve y= x? -4 Ex. 17 : Find horizontal and vertical asymptotes to the curve given by x=3+1; y = —a
Sol. : ‘ SPU, June-2012 |8
Vertical asymptotes : x2 -4=0 Sol®. ' !
= Ift >4thenx=3-4+1=13andy = =
Horizontal asymptotes : Here m =2, n =2 . m=n is vertical asymptote.
y=%=2 is horizontal asymptote. 3 _3
It t = oo, then x — oo and y=t— o0 __T_3

~ i

— 2
Ex. 15 : Discuss all symmetries for y= 42 x9. SPU, November-2013 t(l - ]
x -—
n -
Sot. : is horizontal asymptote.

Symmetry about X-axis : If we replace y by — ¥ equation is changed. .
< It is not symmetry about X-axis ‘ 3 Ex. 18 : Discuss symmetries of the curve- xy - 16 = 0, SPU, June-2012

Symmetry about Y-axis : If we replace x by —x, equation remains unchanged. Sol". : .
It is symmetry about Y-axis. Here xy - 16 = 0
" Symmetry about origin : If we replace x by ~x and y by -y, equation is changed. 16
If is not symmetry about origin. = y=—x—

Ex. 16 : Find equation of tangent to the curve given by x = acos@; y = bsin®,

Symmetry about X-axis
SPU, November-2013
< If we replace y by ~y, equation is changed.

Sol". : .

Here x = acos8; y = bsing -~ It is not symmetry about X-axis

%=—asin9; d—;=bcose ‘ Symmetry about Y-axis. If we replace x by —x, equation is changed.

dy _ bcos® < It is not symmetry about Y-axis. ' |

dx  -asin® Symmetry about origin :

Equation of tangent at point (acos8, bsing) is y - y, = D (x - _ 16 16

Yo dx x=x). It we replace x by ~x and y by —y then — TETZ 2 y=—.
= y—bsin(-):;bcgs_e(x_ 0 ' *
asin® acos®) Thus equation remains unchanged. ’

= asinBy ~ absin? 0 = - bcosbyx + abeos? O ~ It is symmetry about origin.

= bcosBx + asinBy = gb

! cosBx +sm6y =1 '
a b

BT B ey e e L S e m e L
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&  Fill in the Blanks :

— Calculys

lmmmnmEmnmemmnm®1 \

Asymptotes of y =x3~3x2 42y are

@x=01,2y=1 ®x=0-1,2y=9

©x=0,1, —- 2 (d) Not possible
2. Asymptotes of y =%
Tt a-g T —
Daminaly! r=cl2iy=o
x=1, 4 y = ) (d) Not possible
3. Asymptotes of y=w :
x(x—-4)
@x=0,4y=1 O x=1-2y=1
©@x=1-~2,y=0 dx=1-2
‘2 -
4. Asymptotes of - y= xz 1 are .
) x* -4 -
@x=2-2,y=1 B x=1,-1y=1
©x=2-2y=0 @Dx=1-1-2
5. y=1x3-3x2+2x is symmetric about .
(a) X-axis ' (b) Y-axis
(c) Origin (d) None of these
2
6. y=—- is symmetric about
3x . .
(a) X-axis (b) Y-axis
(c) Origin ‘ "~ (d) None of these
1. = F-Dx+2) is symmetfic about .
x(x-4)
(a) X-axis ’ (b) Y-axis
(c) Origin (d) None of these
x2 -
8, y= -4 is symmetric about ___
(a) X-axis - (b) Y-axis
(c) Origin (d) None of these
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9. Parametric equation for x2/3 4 y2/3 - 42/3 gre B
(@) x=acos’6; y =asin’ (b) x =acos?6; y = bsin®0
(©) x=cos*6; y =sin*0 (d) x=acos*8; y = asin*0
10. Parametric equation for +/x + J; =+a are
(8) x=acos*6; y=bsin!0 (®) x =acos*0; y = bsin30
(©) x=cos*6; y =sin?0 (d) x=acos*8; y=asin’0
11. The curve of y =x3 —3x2 4+ 2x has branches.
(@ 1 (b) 2
© 3 (d 4
12. The curve of y = 2 has branches.
(x+1)(x-2)
@ 1 " (b) 2
(© 3 @ 4
13. The curve of y =w has branches.
x (x -4)
(@ 1 . ()2
©3 d) 4
x? -
14. The curve of y =-;2-:z has branches.
@ 1 () 2
(© 3 ) 4
—y2
15. The curve y = 2 x9 , is symmetric with respect to
X x2 -
(a) Origin (b) X-axis
(c) Liney =x (d) Y-axis
16. Horizontal asymptote for the curve xy — 3y -~ 9 = 0 is
@y=0 by x =0
©y=1 (d) None
17. If (ﬂ) =0 then the tangent at point P is parallel to the
j4
(@) Yeaxis (®) X-axis
(d) None

(c) Linex =35
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18. Vertical asymptote for the curve Ixy = 2is ______

@y=0 b)x=0

(c) y = 1 (d) None

. 2 _
19. The curve x = yz , is symmetric with respect to ___ .
y2 -

(a) Origin (b) X-axis

(c) Liney = x (d) Y-axis
20. Vertical asymptote for the curve x = ?, y=tis

@y=0 by x=0

©y=1 (d) None
21. Parametric equation of an ellipse is

(a) x = acosb, y = bsin@ (b) x = asecH, y = btanb

(¢) x = cosH, y = sinb (d) None
22. Horizontal asymptote for the curve x = l, y=2t+1is

t

@y=0 ®) x=0

©y=1 (d) None
23. Vertical asymptote for the curve x = ¢ + 1,y = 3 is .

@y=0 by x=5

(©y=1 (d) None

24. Equation of a cycloid is

(@ x="a(®-sinB), y=a (1 - cosf)

b)) x=a(l ~sinb), y=a(6- cos0)

(¢) x = a (0 - sinb) (d)y = a (8 - cosh)
jl ANSWERS —
1. @), 2, (b), 3. (a), 4. (a), 5. (d), 6. (c), 7. (d), 8. (b),
9. (a), 10, (d), 11. (a), 12, (¢), 13. (o), 14. (c), 15. (d), 16. (a),
17. (b), 18. (b), 19. (b), 20. (b), 21 (@), 22. (c), 23. (b), 24. (a).

[ SHORT QUESTIONS |

Answer the following :
Discuss intercepts, symmetry, honzontal and vertical -asymptotes for each of the followmg

curves
3 4-x2
1 =X _ ) y=
® =Gy © =373 O r=7s
2 | x?-1 Ny E-DE-3)
® y=—— ® T NRIEEE
x—1 x+4 _@x-1(x-3)?
© ¥y= Z+9 @ y——_lg & y= (x_4)2(x+1)
o2 R " _x=2(2+D
@ y=7"75 ® y=7 TR

Discuss intercepts, Extent, Tangent and asymptotes for each of the following curves.

(a) x=4secH; y=3tan6 ) x=3(0~5sinB); y =3(cosd —1)

1

1
@ *=py=t-+

(b) x=2cos?6; y=3sin® ;

(€ x=4t2 +4r,y=1+4¢ th) x=1-cost; y=1-sint

d) x=t>+4ny=12-3 (i) x=sin0 + cos; y =sin® ~ cos 6|

2t
-—t+1 = —_—
(&) x Y=

() x =cos36; y = 3sin0
Express the following in parametric form :

@ x*-2xy+y*+y=0 (©) (x+) =2y (x+y?-8=0 ’
®) x2+2xy+y2+x=0 @ x+yP-x(x+yr+1=0

If curve is symmetry about both the axes then prove that it is symmetry about the origin.

Calculus / 2018 / 17
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L b ’ Discuss intercepts, Extent, Tangent and asymptotes for each of the following curves.
- Discuss intercepts, symmetry, horizontal and veriic al ) Hence sketch the curve.
f] I as’ :
each of the following curve, Hence sketsh the‘ ymptotes and sign of function for
e curve. (@) x=3sech; y=2tan0
Skotch 1 OR (b) x=2cos?6; y = 4sin®
etch the curve given b ;i : ]
given by following. (c) x=4r* +4t;,y =1+ 42
OR d) x=r*-4ny=1-3
Trace the curve given by following : @ x= py=sr-ot
. t
2 = M = —
@ y=l @ y=2=4 D (r+2) @ x=r+by=rg
=1 Y O Y=
o \ ) x=20-sin0); y=2cos0d-1)
() y== @ y=2"14 (-Hx+3)
=4 y= (o y=G=DE*3) JLo, ol
x 2.4 )y Tt ) ® x-t,y—t -
x~1 2 '
= _x*+4 2x = 1) (x + 3)2 (h) x=1+cost; y=1-sint
© x2__9 (& y*x2_4 )] y.—.:_._4L_)2- Y !
) (x+4)(x-1) (i) x=sinB - cos6; y =sinB@ + cosO
= x . x2 -9 2 j)  x=cos26; y=2sin8
@ =g W y=5 m) y=E*DE+D 0 y =2sin
_ (x=2)(x+1 3t 312
3 : 2 k) *=——Fiy=o3
(e ¥y= 2x (@) y=_fl-x : 141 1+t
x°+1 X2 -9
» . () x=btan8; y =asecHd
Sketch the curve given by following : (m) x=acosech; y=bcotf
=43 2 . - 2
(@ y=x"+3x2 +2x @B y=@x-1D°(x+2) _ (n) x=bcotB; y =acosechd
b 2 _x=2)= i =x2 (x2 — '
® yx?-x-2)=2 G y=xu*-9 4. Express the following in parametric form using the given substitution. Then \sketch the
(©) xy-3x-y-2=0 & y=x*(2-9) curve. '
(d) 3xy=2 ) O y=(x-D%x+2) ‘@ X -2xy+y +x=0x-y=t
© xy-3y2-9=0 (m) x2y+3y=2x2+7 ) 2 +2xy+ ) +y=0Ox+y=t
(f) y=x(x "'.9) (n) x2y+4x=4y ‘ _ (d (x+y)3—2y(x+y)2—-8=0;x+y=2t
3 4 — —
(g) y=x*-1 | (0) xy-y~2x=0 (C)J;+J;=Jz;x=asin49
= ~-Nn3
h) y=(x+2)(x )] , (e) (x-g.y):‘--x(x+y)2-i-l=0;;\:+y=l"l
.~ 3 Sketch the curve givep by following : . v () x5+ y23 =a?’3, x=acos’ 0
: PR OR - . 5. A circle of radius 2 rolls along a line without sliding. Show that the paih traced by a
Without converting into Cartesian form, sketch the graph of the curve given by following. point on the radius 3 units from the centre is given by x = 20 — 3sin@; y = 2 — 3¢ os0.

OR
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[ POLAR CURVES |

m  Definition :
Polar equation : Let f{x, ¥) = O be a cartesian equation of a curve. By substituting
x = rcos®, y = rsin® in flx, y) = 0, we get equation g(r, 8) = 0 which is called polar equation

of the curve. E

m  Polar Co-ordinates : P(r,6)
In figure point O is called origin or pole.
- &)\ is called polar axis. z
- (—)—])3 is called normal axis. - () »A
- Distance OP = r called radius vector. °
'— Angle ZAOP = 6 is called vectorial angle of point P. ¥
— (r, 0) is called polar co-ordinates of point P.

m  Remarks :

() If angle © measured anticlockwise direction from polar axis, then 8 > 0, otherwise
0 <0

(ii) Every point (r, 8), - 2t < 6 < 27 can be express three other ways.
— If 8 2 0, then p(r, 6) can be written as (r, 8 - 360°, (-~ r, 6 = 180°).
— If 6 <0, then p(r, 8) can be written as (r, 8 + 360°%, (~ r, 6 = 180°

Ex. 1. Express following point in the three other ways such that - 2r < @ < 27,

1 3, 400 SPU, November-2013

Sol", :

P (3. 40°), (3, ~320°),
(=3, 220°), (-3, -140°)

-

Q {3,220, 3, 140%)
Thus (3, 40°) can written as (3, - 320°), (- 3, 220°), (- 3, — 140°)

Curve Sketching

(2) (2, 659
Sol”. :

.

Q(2,245), (2, -115%)

P(2,65°), (2,-295°),
(-2, 245°), (2, -115°)

1150

Thus (2, 65°) can be written as (2, — 2959, (- 2, 245°), (- 2, - 115°)

3 @G, - 459
Sol”. :

SPU, September-2014

+Q (3, 135°), (3,-225°)

P (3,‘-45°), (3,315°),
(-3, 135°), (-3,-225°)

Thus (3, — 45°) can be written as (3, 3159, (- 3, 1359, - 3, - 2259 v

@ -3 -30
Sol". :

+ P (=3,-30%, (-3, 330°), (3, 1£0°), (3, -210°)

Thus point p(- 3, — 30°) can be

Q(3,~30°, (3, 3307
written as (- 3, 330°), (3, 150°), (3, — 210°)
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(5 6 - 2257
Sol". :

™ Q(5,~45°), (5, 315°)
Thus point (5, ~ 225% can be written «s (5, 135%, (- 5, 315° and (- 5, — 45°).
6) (-4, - 1357
Sol”, :

P (-4,-135°), (-4, 225°),
7T (4,45°), (4,-315°)

Q (4,-135°), (4, 225°)

Thus point (- 4, — 135°) can be written as (— 4, 225%, (4, 45°) and (4, - 315°).
(7) (5, 200° .
Sol", :

_ P (=5,200°), (=5, ~160°),
. ,n”’ (5’ 200)) (51 _3400)

Q(5,200°), (5,-160%
Thus point (- 5, 200°) can be written as (- 5, — 160°), (5, 20°), (5, — 340°).

Curve Sketching 135

.l Relation between Cartesian Co-ordinates and polar co-ordinates :

SPu, .lunc-Z()!Z

Let P(x, y) be any point, let (r, ) be polar Co-ordinates of P. Draw -‘PM L x-axis.
—> From right angle AOPM,

x
cosf = - Y
1
PG (O
and sinf= 2 |
’

[=rome] "
Also x2 + y2=,2 '

0 .

Also, P tan 0
x

8=tan' 2~
x

Ex. 2. Express following point in polar form.
M (3
Sol”, :

Here, x=+/3, y =1

SPU, April-2015, November-2010, 201:)

r o= x2+)’2 = J3+1 = \/Z \
r=2
y 1
tanf = = = —
Also tan . 3
11
6=tan”' —
3
T
0=— or T+—
6
g=" [+ x>0, y>0, point is in 15t quadrant]
6
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) (=+3,-1) SPU, Nov. 2012, June-2011
Sol”. :

Here, x=—+/3,y =~-1

= ,/x2+y =J3+1 = J4 =2
=2

= e=n+§ [~ x<0,y<0, point is in 31 quadrant]

mny -
Thus (7, 0)=(2,?—) is required polar form,

@ (-3,1)
Sol", :

Here x=—3,y=1

J—— YERRIE

r

1
Also tan@=2 = _
x _h
1
O=tan"!|-—
( JE]
6=n-% o -T
6 6

SPU, June-2012, Dec. 2014

T
O=n- g [ x<0,y>0, pointis in 20 quadrant]

S5n
Thus, (r, 9)=(2,?J is required polar form.

Curve Sketching

@ (3,-1
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n

Sol™.
Here x=+3,y=-1

r = ,’x2+y2
= ,’3+ =\/Z=2

= r=2
Also tan9=%=:—\/—%'
6 = tan '(—-\7—3_’}
= e=n-§ or —%
= e=:-6E [+ x>0,y<0, point is in 4"“ quadrant]

Thus (r, 0) = (2,—-%) is required polar form.

(5) 595
Sol". :
Here x=-5,y=5

= J25+25 =50

Also tane————-s-—=—~1
x -5
= 0=-— or w—~—
T
= 6=n—z [ x<0,y>0, 2 quad.]

Thus (r, 9)._:( 5,/5,1475) is required polar form.

Caleulus / 2018/ 18
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. I Curve Sketching
Sol®. : and y = rsin@ = 2sin (120° = 2sin (n - 60°)
X = O’ y = - 3 = 28":/_(600)
3
r = x2 + y2 = J§ =4 2. _2__
r=3 = \/5
4 (x, ¥) = (~1.4/3) is ‘Cartesian co-ordinates.
Also tan9=l=——3=—oo | , |
x 0 (3 (- 4, 300°) SPU, December-2014
- “ _ _. Sol”, : ‘
= 0=— o qg4+= » Here r = - 4, 8 = 300°
2 2 .
3 ‘ x = rcosf = — 4cos (300
9=20 [vx=0, y<0] = — dcos (2r - 60°)
2 = - 4cos 60°
' 3n : 1
s (n 9)=(3,7) is required polar form. = —4(5]
. : . =-2
. Ex. 3. Express the following point in Cartesian form (that is in rectangular form). Also y = rsin=: — 4sin (21t — 60°)
1) G, - 45°) o = — 4sin60°
.Sol", : NE)
Here, r =3, 0 = — 45° =4_2__
. . ) ) 3 = 2.\/5
x = reosd = 3cos (- 45°) = 3cos 45° = E o ¥ = (=2 24/3) is Cartesian co-ordinates.
3 Ex. 4. Transfer the following equation in Cartesian form.
and y=rsin®=3sin (- 45°) = —= . 5
2 ' Q re—>="—— : ;
3cos0 + 4sin® |
3 3 . LI
(x, y)=| ~=,—-7=| is Cartesian co-ordinates. Sol’. :
’ [«E 2 ] - | )
@ @ 1200 "= 3c0s6 + 45in®
Sol". : o 3rcos® + 4rsin = 2
Here r = 2,-6 = 120° AW o x+dy=2

Which is equation of line.

Ll . .
x = rcos® = rcos (120°) _ ‘ |
2cos - (1t — 60%) ' (2) r = tan - secO
Sol”. : .

= Zeos§0° r = tan9 - secO

1)_ " y 1
_2[5]_ : ~ x cosH
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rcose=l
X
x=2
x

which is equation of parabola.

(3) r = tan® + secH
Sol". :

X cos8
ycos® + x
xcos9

xrcos® = ycos6 + x
2

Xx¢ —x=ycos@
(x* = %) r = yrcos8
x2-x)r=yx

(x—l)\}xz+y2 =y
/x2+y2 4

(x-1)

2
x?+y?= y
(x-12

tan® + secO
sin@ 1
—_—_—
cos® cos0O
sin@ +1

cosB
=" rcosb = sin + 1
= x -1 =sind
= (x~1)r=rsind
=
=

OR

~
1]

(x - 1)2,.2 = y2

[ =D T+ y%) =y?|

(4) .r = 2cos® + 3sin@

Sol", :

r? =2rcos0 + 3rsin@
x2+y?=2x43y
Which is equation of circle,

SPU, Nov. 2013, Dec. 2014

Curve Sketching
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(5) r (2cos® + 3sin@) = 4

Sol”. :

@6) r

M

Sol™. :

o (a2 =(6-2x7 |

2rcos® + 3rsin® = 4
2x + 3y =4
sec® + cosecO

1 1

o+ —
cos@ sin@
_ sin@ +cos

cosB - sin®

r=

rcosd - sin@ = sin® + cos6
rcosO - rsin® = rsin@ + rcos@

xy=)’+x|
_6
1+ 2cos6

r+ 2rcosB = 6
r+2x=6
2 +yt +2x=6

j SPU, Dec.

8) 8 =30

Sol. :

tanf=2

Which is equation of line.

-

X

tan 30° = 2
X

9) r?=sec?0

Sol", :
3
r2=
cos?9
= r?cos?@=1
= |x?=1

— SPU, April-2015 "

2012, .lum-zl 1

SPU, June-2012, Nov. 2010 B
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 LGRAPH OF SOME POLAR CURVE |

T°v sketch the graph of polar; curve we have to discuss following point :
(1) Symmetry '

(2) Closeness "
(3) Extent

(4) Table of. some 70int,

B Closeness : If We re i i
‘e replace 6 by 2m + 0 in r = f{8), equation remains unchanged the;
we say that 8 ven curve is close. i n

~® Definition :
§)) Symmetry, curve about line I :

A curve s said to be symmetry with respect to line [, if A

whenev?t‘_ point A lies on the curve then point B which.is symmetry
. 10 A Wiih respect to line / also lies on the curve.
@) Iro'ymmetry curve about point 0 :

© 4\ curve is said to be symmetry with respect to point 0, if B
~ whenever point A lies on the curve, the point B which is symmetry
to A with respect to point 0 also lies on the curve.
" "Theorem-1 : )

Prove that a curve given by polar equetion is svmmetry with respect to polar axis, if one

" of the following condition hold. SPU, June-2011

(i) The equation remains unchanged on replacing » by - r and 6 by & - 6,
- . OR

State when a polar curve is symmetry with respect to polar axis ? Also prove it.

(i) The equation remains unchanged on replaci‘ng 0 by - 6.

Proof : SPY, April-Z()l(),% Nov. 2015, Nov. 2013, Dec. 2012, Nov. 2010

Let f(r,"0) = 0 be the polar curve.

Q(r,=-6) P 6) -
(i) If equation remains unchanged ’
“on replacing 6 by — 6, then we
have f{r, ~ 0) = 0. It means that < n—0 () M| A
. . . h %) |
if point P (r, 6) lies on the curve
then point Q, (r,— 6) also lies on . >
the curve. . v (D) Q.- )
QZ(_ r, ,1\:-9)
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From fig. we say that PQ, cut the polar axis at M also A POlQl is isosceles triangle,
with OP = OQ; and OM bisect £ POQ;,.

OM is perpendicular bisector of }_;(31.

By definition we say that P and Q, are symmetry with respect to polar axis. ... (2)

By (1) and (2) we say that given curve is symmetry about polar axis.

(ii) If equation f(r, 8) = O remains unchanged on replacing r by — r and @ by = — 6, then

we have f(- r, ® — 0) = 0. It means that if point P (r, 8) lies on the curve then point
Q, (—=r,m~06) also lies on the curve. : v (3)
Also from the fig. we say that Q, and Q, are the same point.

By above case (i), we say that P and Q, are symmetry about polar axis. ... (4)
From (3) and (4) we say that given curve is symmetry about polar axis.
Hence, theorem is prove. C

Theorem-2 :

Prove that a curve given by polar equation is symmetry with respect to normal axis, if

or;e of the following condition hold. SPU, December-2012

(i) The equation remains unchanged on replacing 0 by © — 6. »
(ii) The equation remains unchanged on replacing r by — r and 6 by - 6.
OR
State when a polar curve is symmetry with respect to normal axis ? Also prove it.

SPU, April-2016, Nov. 2015, Dec. 2014; Apri[—Z()lS; Nov. 2012, 2013; Junc-ZQIZ

Proof :
Let f(r, 8) = O be the polar curve.

(i) If equation remains unchanged on replacing by © ~ 6, then we have f(r, * — 6) == 0.
It means that if point P (r, 8) lies on the curve then point Q, (r, 7t~ 8) also\ lies on the

curve. B e (D
— Let PQ, cut the normal axis in M as Y
shown in the fig. . M. |
Also from the fig. we say that APOQ, is 8;2:‘;::;;) s EP(" »9)
isosceles triangle with OP =0Q, and OM P p i
bisect £ POQ;. NS E %A
. OM is L¢ bisector of PQ,. < IR :
Point P and Q, are symmetry about \\ i
normal axis. w (2) \‘\E
From (1) and (2), we say that given NQ (- 6)
curve is symmetry with respect to . ,L

normal axis.
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(i) If equation remains unchanged on replacing r by — r and 8 any — 6, then we have (4) Spiral : There are three types of spirals. .
. . . . —

f(=r, = 8) = 0. It means that if P (r, 6) lies on the curve then Q, (~r,~8) also lies on (i) Logarithmic spiral : It is given by r=ev,

the curve. - ® (ii) Archimedes spiral : It is given by r = ad. ,

From fig. we say that Q; and Q, are the same point. Therefore by above case (i), we o L a

. ol s It = qg ie. —-(©0).
say that P and Q, are symmetry point about normal axis. e (@ (iii) Reciprocal spiral : It is given by 9 =aie r= 5 ©=0)

From (3) and (4) we say that given curve is symmetry with respect to normal axis.
Hence theorem is proved.

Theorem-3 : (Only statement)

— A curve given by polar equation is symmetry with respect to pole, if any one of the
following condition is hold.

(i) The equation remains unchanged on replacing r by — r.
(ii) The equation remains unchanged on replacing 6 by © + 6.
OR
State when a polar curve is symmetry with respect to pole ?

m  Definition :

(1) Limacon : The curve given by equation r = a * bcos8 or r = a = bsin@ (a > 0, b > 0) are called
limacon.
= Ifa=
- Ifa>
- Ifacx

b, then limacon is called cardiod.
b, then limacon is surround the pole.
b, -then limacon has inner loop.
(2) Lemniscate : The curve given by r2=4%4%c0s20. or r2=x+q2sin20 are called
lemniscate.
Remark :
(i) Shape of lemniscate is 8 (Eight).

(i) Lemniscate of the form r? =+ a%cos20 is symmetry about polar axis, normal axis
and pole.

(%ii) Lemniscate of the form r2 =+ q?sin20 is symmetry about polé only.
(iv) Limacon of the form r=at bcosd is symmetry about polar axis only.
(v) Limacon of the form r=a+ bsin® is symmetry about normal axis only.

(@>0,ne N)

.(3) Rose curve : The curve given by equation r = acosn® or r = asinn@
is called rose curve.

~ If n is odd, then graph contains n loops.

- If' n is even, then graph contains 2n loops. !

Remark :

() In rose curve if n is even then it is symmetry about polar axis, normal axis and pole. |
(i) In r = acosnb, if n is odd then it is symmetry about polar axis. i
(iii) In r = asinn®, if n is odd then it is symmetry -about normal axis

5, Sketch the following curve.

r=3(Q + cosb)

Here,a=3,b=3

Given curve is cardiod.

(i) Symmetry : If we replace 6 by - 9 equation remains unchanged. So the curve is -
be symmetry about polar axis, Clearly it is not symmetry about normal axis and pole.

(i) Closeness : If we replace 9 by 2% + 6 equation remains unchanged so given curve
is closed. So we can take 6 between O to 2.

(iii) Extent : We know that,

Ex.
1)

SPU, April-2016, April-2015, June-2011

a=b

-1<cos0<1
= 0<1l+cos8<2
= 0<3(+cos0)<6
= 0<r<é6 .

We know that given curve is symmetry about polar axis. So we can take 6
between 0 to 7.

(iv) Table of some points :

0 0 |30°{60°|90° (120°{150° | 180°
r=3(+cos8) | 6 |56[45]3 | 1504 ]| 0
0=90° |
0=120° 4 6 =60°

Calculus / 2118/ 19



146

Calculus ‘

el - . SO S R S

Curve Sketching 147

.2 r=2 4+ cosd
Here,a =2, b = | a>b

Given curve is limacon surround the pole.

® .Symmetr_y : If we replace 6 by - 6, equation remains unchanged so given curve
1s symmetry about polar axis. Clearly it is not Symmetry about normal axis and pole.

S (i) ‘-'Clos_eness : If we replace 0 by 2% + 6 equation remains unchanged. So given curve
is closed. So we can take © between 0 to 2. ‘

_ (iit) Extent : We know that

~1<cosB<] .
= 1€2+cos6<3
= 1<rg3

We know that given curve is symmetry about polar axis so we can take @ between
0 to m.

. (iv) Table of some points :

0 0 |30°[60°]90°f120° [150° ] 180°
4r=2+cos®| 3 |2825| 2 |15 1.1 1

SPU, June-2012, Dee. 2014

3 r=2 + 3cosd
Here,a=2,b=3
Given curve is limacon with inner loop.

a<b

(i) Symmetry : If we replace 8 by — 9, equation remains unchanged. So the curve is
symmetry about polar axis. Clearly it is not symmetry about normal axis and pole.

(i) Closeness : If we replace 8 by 2 + 0 equation remains unchanged. So the curve

is closed. So we can take value of 8 between O to 2.
(iii) Extent : We know that

-1<cosb<1

= =3<3cosf<3

= =-1£2+3c0os8<5

= -1<rgs

The curve is symmetry about polar axis so we can take value of 0 ‘between 0 toT.
(iv) Table of some points :

6 0° | 30° [ 60° | 90° | 120° | 150° | 180°

r=24+3cos@ |5 (46 (35! 2 |05 |-06| -1

8 = 90°
0=1200 ¢

0 =60°

@ r=3(@ - cosd)
Here,a =3, b =3 s oa=2b

Given curve is cardiod. ) _
(i) Symmetry : If we replaced 6 by - 9, equation remains unchanged. So ‘the given

curve is symmetry about polar axis. Clearly it is not symmetry about“.}normal axis
and pole.

(i) Closeness :
is closed. So we can take & between 0 to 2m.

If we replace by 2m + 8 equation remains unchanged. So the curve
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(iii) Extent : We know that (iv) Table of some points : ,
- lssscose il< 1 : ;' I o 307 [ 60° | 90° | 1207 | 150° [ 180° |

= - - COSU = :
. ; =2 - 251281 3
= 0<1-cosf<2 g ‘r—2 cos@| 1 ll.l 1.5| 2 5 ‘ J
= 033(1—COSB)$6 :r e::goo'
= 0sr<6 , 0 =120° 0 = 60°

The curve is symmetry about polar axis so we can take © between 0 to T.
(iv) Table of some points :

e 8
8 0° [30°60° [ 90° [120° [ 150° | 180° ;
r=3(1-cos®)| 0 [04(15] 3 [45][55] 6 :
0= 90° | 6=

6 = 30°
8 >0 =0°
(6) r =2~ 3cosd
Here,a=2,b=3 . a<b
Given curve is limacon with inner loop.
(i) Symmetry : If we replaced 6 by - 0, equation remains unchanged. So the curve
v is symmetry about polar axis. Clearly it is not symmetry about normal axis and pole.

(3) r=2- cos
Here,a=2,b=1 . a>b
Given curve is limacon surround the pole.

(i) Closeness : If we replace © by 21 + equation remains unché,nged. So the curve
is closed. So we can take 0 between 0 to 2. '

. , ) (iii) Extent : We know that, :
@ Symmetry : If we replaced 8 by - 6, equation remains unchanged. So the curve . 1<cos8<1 \
) is symmetry about polar axis. Clearly it is not symmetry about normal axis and pole. o 9_
(i) .Closeness : If we replace 8 by 2m + © equation remains unchanged. So the curve = 32-3cos02-3
is closed. So we can take value of 8 between 0 to 27. = 522-3c0s62-1
(iii) Extent : We know that = -152-3c0s@55
-1<cos6<1 = -1<r<S
= l2-cosbz-1 ' We know that the curve is symmetry about polar axis. So we can take 6 between
= 322-cosf21 0 to .
= '1€2-~cos6<3
= 1<r<3 (iv) Table of some points :
We know that given curve is symmetry about polar axis. We can take value of © 6 0° | 30° | 60° 90" |120° | 150° | 180°

between 0 to 7.

r=2-3cos6| -1 |~05]05| 2 | 35| 45 5
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(7 r*=9sin20
Given curve is l@mniscate.

SPU, Nov. 2016, April-2016 June-2012

() Symmetry : If we replaced r by - r, equation remains unchanged. So curve is
symmetry about pole. Clearly' it isn’t symmetry about polar axis and normal axis.

(i) Closeness : If we replace 8 by 21t + 6 equation remains unchanged. So the curve
is closed. We can take O between O to 2r.

(ili) Extent : We know that,
~1<sin20<51
= =-9<9sin20<59
= -9<5r2g9

- )

Also We know that

r220
= 9sin2020
= sin2020

0520<st or 2n<20<3n

()S()SE or nsesé-’f
2 2

Given curve is symmetry about pole. So we can take 6 between 0 to 5

(iv) Table of some points :

6 0° | 30° | 45°] 60° | 90°
r2=9sin20 | 0 | 7819 |77 ]| 0
r=+3Vsin20 | 0 |27 [£3 (227 0

(8) r%=-16sin26
Given curve is lemniscate.

()] 'Symmetry : If we replaced r by — r, equation remains unchanged. So the curve is
symmetry about pole. Clearly it isn't symmetry about polar axis and normal axis.

(i) Closeness : If we replace 6 by 21t + 8 equation remains unchanged. So given curve

is closed.
(iii) Extent ;: We know that,
~-1<sin20<1
= 162-16sin202-16
= -16<r2<16

~ [EErE

Also we know that
rtz0

= —16sin2020

= 16sin20<0

= sin20<0

\

o
L ig
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= m<20<2m or 3m<20<4m
1 n
—<0<T™ —<0<2n
= 13 or {7
T
Given curve is symmetry about pole. So we can take 6 between 3 to T.
(iv) Table :
0 90° 120° |135°| 150° |180°
r? =—16sin20 0 1385 | 16 | 13.85 0
r=t4/-sin20 | 0 |[£372|+4 |#372] 0
=90°
e =
(9) r = cos28 SPU, November-2010

Given curve is rose curve with 4 loop. (- n = 2, even number)

() Symmetry : If we replaced 8 by — 8, equation remains unchanged. So curve is
symmetry about polar axis.
If we replace 6 by m - 8, equation remains unchanged. So curve is symmetry normal
axis.
If we replace 6 by & + 8, equation remains unchanged. So curve is symmetry about
pole. :
(i)
: is_ closed. We can take 0 between 0 to 2.
(ifi) Extent : We know that,
-1<cos206<1

- [Ciz0

s e

Closeness : If we replace 0 by 21 + 8 equation remains unchanged. So given curve.

153
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i We know that

cos206 =0 cos28 = 1

20 =.1.2‘_ 20 = 2%

T
9=2

Given curve is symmetry about polar axis. We can take © between O to ® aad

T .
difference between 0 is z in table.

(iv) Table :
0 0° |45° |90°|135°|180°
r=cos20| 1 of{-1]10 1
0=
0=180°« 0=0°
S
107 = sinke

Given curve is rose curve with 3 loop. (.- n = 3, odd no.)
(i) Symmetry : If we replaced by © — 6, equation remains unchéngeé. So curve is

symmetry about normal axis. Clearly curve is not symmetry about polar axis and pole.
If we replace © by 27 + 0 equation remains unchanged. So the curve

(ii) Closeness
is closed,

(iii) Extent : We now that
-1<s5in30<1
-1<r<l

Caleulus 1 2018 /20
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$in30 = 0 sin30 = | 2. The curve of r? =9sin20 is symmetric about
a) Polar axis i
020 o 2t " (a) (b) Normal .axxs
5 (c) Pole (d) Polar axis and normal axis and pole
1t 3. The curve of r = sin30 is symmetric about
0=0 or - =" P i i
3 p (a) Polar axis (b) Normal axis
y ‘ ‘ ‘ . (c) Pole (d) Polar axis and normal axis and pol
Given curve is symmet ’ i W : e po
. ymmetry about normal axis. We can take © between to 3n and 4. The curve of r = cos38 is symmetric about
difference between  is 30° in table. 2

(iv) Table :

0 90° {120° { 150° | 180°

270°

r =sin30

-1]1 0 1 0

0=210°

0 = 240°

v

0=270°

| MULTIPLE CHOICE QUESTIONS |

Fill in the Blanks :
For the curve r? =9sin20 extent is
(@@-3<r<3

(©0<r<s3

.

b)-9<sr<9
d-2<r<2

(a) Polar axis (b) Norrﬁal axis

(c) Pole (d) Polar axis and normal axis:and pole
5. The curve of r = cos20 is symmetric about .
(a) Polar axis (b) Normal axis
(c) Pole

6. The curve of r =

(d) Polar axis, normal axis and pole
sin40 is symmetric about
(a) Polar axis b) Normal axis
(c) Pole

7. The curve of r =

(d) Polar axis, normal axis and pole

20 is symmetric about

(a) Polar axis (b) Normal axis

(c) Pole
8. Lemniscate r? =a?cos28 is symmetric about

(d) Polar axis, normal axis and pole

(a) Polar axis (b) Normal axis

(c) Pole
9. Lemniscate r?=a?sin20 is symmetric about
() Normal axis \

(d) Polar axis, normal axis and pole

(d) Polar axis, normal axis and pole

(a) Polar axis
(c) Pole

If n is even then Rose curve r = acosn® symmetric about
(b) Normal axis
(d) Polar axis, normal axis and pole

10.
(a) Polar axis
(c) Pole

11. If n is even then Rose curve r = asinn® symmetric about

(b) Normal axis

(d) Polar axis, normal axis and pole

(a) Polar axis
(c) Pole

Ifn is odd then Rose curve r = acosn® symmetric about
(b) Normal axis
(d) Polar axis, normal axis and pole

12,
(a) Polar axis
(c) Pole
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= i tric with respect to _
13. X n is odd then Rose curve r = asinn® symmetric about 24. The curve r = 3cos® is symmetric wi (b) i’olar axis
(a) Polar axis (b) Normal axis (a) Pole d) Normal axis
(c) Pole (d) Polar axis, normal axis and pole (c) Liney = x ( o ,’
14. If n is even then Rose curve r = acosu(()b)ha;s loops. 25. The reciprocal of r = e i ]
(a) 1
() n (d) 2n (a) Circle (b) Rose curve
15. If n is odd then Rose curve r = acosn® has loops. (©) Cardioid (d) Lemniscate
@1 gj’; 2 26. The curve r = 4sinS0 is an equation of ____.
© n " i (b) Rose curve
16. The curve of r = a0 is symmetric about @ lea‘ct')n & Lemni '
(a) Polar axis (b) Normal axis (c) Cardioid . (@) Lemniscate
(c) Pole . (d) Polar axis, normal axis and pole 27. The curve 8 = 40° is an equation of ____. :
17. The curve of r = sin30 has loops. (a) Ellipse () Hyperbgla
(@1 (b 2 (c) Line (d) Parabola
(© 3 (@) 6 28. For the Hyperbola eccentricity
Y
18. The curve of r = 3cos40 has loops. (@e=1 Me<t
Ea;; (‘d’) 8 ©e>1 @e=0
c ) 4 ey
2 —ANSWERS | . .
19, re— L
" Bcoso + asing) "ePTOSCNt @ L@ 2@ 30, 4@ 5@ 6 706, 8 @
(a) line (b) parabola 9. ) 10. (@, 1L (@), 12 @), 13.(), 4. @), 15 (), -16. (b),
(c) ellipse (d) circle 17. (¢), 18. (b), 19 (@, 20.-(t), 21 d). 22 D, 23. (d, 24. (b),
20. r = tanO sec® represent a 25. (c), 26. (b), 28. (c). : )

21.

22,

() Liney = x .

(a) line
(c) ellipse

(b) parabola
(d) circle

r =2 + 2cosd is equation of
(a) rose curve

(c) ellipse

(b) lemniscate
(d) limacon
The curve r = 3 secO tan® is an equation of

(a) Ellipse (b) Hyperbola
(c) Line (d) Parabola
The curve r = 2 + 3sing is symmetric with respect to
(a) Pole (b) Polar axis

(d) Normal axis

27. (c),

I SHORT QUESTIONS I

B Answer the following : .
Express the following points in three other ways such that - 2 < 6 < 21,

(a) @3, -40°) (@ (-3, 30° (&) 5, 2259
(b) (2, -65°) (e) (3, 459 (h) (-4, 1359
() (-3, - 307 ® @ -m ® -5, - 2007

2. Express the following points in polar form.
@ (1,43) © 1,-43)
®) (-1,43) @ (-1,-43)

) G, -5
® 30
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3. Express the‘followinvg points in cartesian form. (i.e. rectangular form)
(a) (3, 45° {c) (-3, 0® (e) 4, - 300°
' (b) 2, - 1207 (D) (-3, 1259
4. Exprt_zss the following equations in cartesian form.
(@) 7=2/(3cos6 ~ 45in6) (h) r? =sec20
(b) r = cotBcosecd (i) r* =1/(sin20 - cos26)

(c) r = cot® - cosec® () r=4/2+cos6)

(d) r=2cosB - 3sin6 (k) rcos@=4
(e) r(2cos6 - 3sin6) = 4 () r=4cosd
~(f) r ="sec® = cosecd

(m) 8 = 120°
(® r = 6/(1 - 2cos8) :

1. Prove that a curve given by a polar equation is symmetric with respect to pole, if one
of the following condition hold;

' (i) The equatfon remains unchanged on replacing r by - r.
(2) ' The equation remains unchanged on replacing @ by © + 6,
| ' OR
State when a ‘polar curve is symmetric with respect to pole. Prove it.

2. Give all fhe symmetry in the following problems and draw the graph.

OR

'Sketch the curve given by following.
o OR
- Discuss symmetry, closeness, extent, table of some points for the following. Hence sketch
“'the - curve.

(a) r=3(1-sin0) (g) r? =-4sin20 (m) r=2sin50

(b) r=2-3sin@ (h) r? =9co0s20 (n) r=2cos40

(¢} r=2-sin@ () r%=-4cos20 (o) r=3sin46

(&) r=3+2sinb () r==3cos26 (p) r=cos?0

() r=2+3sin® (k) re=4sin20 (@) r=2|cos8|

() r2 =4sin28 (1) re=4cos3® [SPU, April-2015]

| POLAR EQUATION OF CONIC |

Theorem-1 :
Consider a conic whose one focus is at the pole.
(1) Obtain equation of conic, where the directrix is perpendicular to the polar axis.

(2) Obtain equation of conic, where the directrix is parallel to the polar axis.
OR
In usual notation prove that

(1 r=1_+L6 SPU, April-2015, 2016, Nov. 2013, Dec. 2012, Junc-2011, Nov. 2010
X ecos

2) r=~1—;—[—)£-_——-é- SPU, " Nov. 2015; Dec. 2014, Nov. 2012, June-2012
T esin ;

Proof :

(1) Case-I :
If directrix is perpendicular to the polar axis and right to the pole at distance p from the
pole.
Let focus F be at pole O.
Let P (r, 6) be any point on conic, then draw PE L directrix, PR L polar axis, OD L directrix.
From figure we say that OP = r, £DOP = 6, OD = p.
From right angle triangle, APOR
OR OR

c08@=—=— =5 OR = rcosd

Directrix
OP r 4

and sin9=—1->—l} = PR = rsin®
r P(r.6)

M

|

We know that eccentricity, E
d (pt P, focus F)

= d (pt P, directrix) r
_PF_ 1 _ r

““PE RD OD-OR 5 -

r 0 R

]
Y

p —rcos6 .
pe — ercos® = r ,L
pe =r (1 + ecosB)

P
r= 1 + ecos®
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(2) Case-II :
If directrix is perpendicular to the polar axis and left to the pole at distance p from the
pole, then, ‘
PF r r _ r
e = —— = — = =
PE RD OD+OR  p+rcosh E:} P(r,0)
"= ep + ercos@ =r
= ep=r (1l - ecosd) r
ep : F
T = ————— . ) N
1-ecosf ~ 5 H 5 '—1;1 »A
— p —t
Hence, | r= P
1+ ecos6 » A
Directricx
Proof-2 :

(1) Case-I :
If directrix is parallel to polar axis and above the pole at distance p from the pole.
Let focus F be at pole O. Let P(r, 8) be any point on conic.
Draw PE L directrix

OD L directrix - L_D L_F'_, — Directrix

PR L polar axis
Here OP =r, ZAOP = 6, OD = p p P(r,6)

r

From A OPR, l

OR . Y
0089=—r— = OR = rcosh 0 R
and siri():-lﬁ{- = PR = rsin®

r

We know that, eccentricity

' PF ) r r
= e=.—=————=.“. ('-'ER=OD=p)

= ep - ersinb = r

Curve Sketching ,

= ep =r (1 + esind)

€p

= |rs—
1+ esin®

Case-II : If directrix is parallel to polar axis and below the pole at distance p from the pole.

We know that, .

PF . P (r, e)
= =
¢ PE .
-t .
" PR+RE ! »A
. 0 R
. r
- p +rsin@ ‘ p
= ep + ersin® = r 1
= ep =r (1 - esinb) F« "]; | >A
Directrix
p=—20P A
1 esin®
___¢°
Hence | 7 1t esin®
Remarks :
— If e = 1 then conic is parabola.

—> If e < 1 then conic is ellipse.
>

— If e > 1 then conic is hyperbola. |

Ex. 1. Find polar equation of conic if directrix passes through the following points.
@D G,00ande=1 ‘ ’ 4
Sol», : ’

Here, p=5,e=1

Here, directrix is 1* to polar axis and right to the pole. -

Equation of conic is r=—F¢__
1+ ecos® L
= [r== 0 p=3 (5, 0
1+ cosB J

Calculus 12018/ 21




162

Calculus ~ Curve Sketching 163
(2) ( 5, g) and e = ; Equation of conic is
W = pe
Soln, : " 1+ecos@ n
2 «— PSR ' »A
Here, e = 3, p=5 __2@59) 2, m) %) 2,7
. S n 1+ 1.5cos0
Here directrix is parallel to polar axis and above the pole. 72
Equation of conic is ‘r yo 3
I+1.5
. pe | [5, _721] cos@
1+ esin® -« -
, | MULTIPLE CHOICE QUESTIONS |
5.2 p=5
= 5 3 ®  Fill in the Blanks :
. T
1-;-5 sin@ \'5' If eccentricity e = 1 then conic is
- 0 >A (2) Hyperbola (b) Parabola
" 34 250 (c) Circle (@ Ellipse
3 M If eccentricity e < 1 then conic is
3) [5,7) and ¢ = 3 SPU, Sept. 2014, June-2011 (2) Hyperbola (b) Parabola

Soln, :
- Here, e=3,p=35
- Here directrix is parallel to polar axis and below the pole.

Equation of conic is

pe

" T-esin®

y = 5x3
1-3sin0

15
A e ]
1 - 3sin6

@) (-2, 7).and e = 15
- Soln, '

Here, e = 1.5, p =2 ('~ distance p is positve)

Here directrix is perpendicular to polar axis and right to the pole.

v

(c) Circle

(d) Ellipse

If eccentricity e > 1 then conic is

(a) Hyperbola
{c) Circle

(b) Parabola
(d) Ellipse

If directrix is perpendicular to the polar axis ad left to the pole at distance p from

the pole then equation of conic is

pe
y = ————
@ 1+ ecos®
pe .
c) r= ———r—
( 1 —ecos®

|

pe
b) r= ———
®r }+esin®

=P
@ r 1 —esin®

If directrix is perpendicular to the polar axis and right to the pole at distance p from

the pole then equation of conic is

—__pe

@ r 1+ ecos®
pe

r TR e—

© 1 — ecos®

®) " 1+ esin®
e PE
d 1 - esin®
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6. If directrix is parallel to the polar axis and above the pole at distance p from the pole
then equation of conic is ___
___pe b) r= __re
(a) r.-1+ecose ( ) r 1+ esin®
_ pe Y L
© r=1"rcos6 @ =1 i
7. If directrix is parallel to the polar axis and below the pole at distance p from the pole
then equation of conic is
= ——-—-——pe b) r= ——'—pe
@ = ecose O = e
= P¢ d) r=—2>¢
© 7= ccose @ =T cine
8. Polar equation of conic, if directrix passes through the point (3, g) and ¢ = % is___.
15 15
S — b = e
@ = 5sme ® = ame
15 15
= — d = —————
© = Ssino @ =5 aene
. = i i f
9. The curve r 37 5in® is an equation o
(a) Ellipse (b) Hyperbola
(c) Line (d) Parabola
10. The curve r= is an equation of
1+ cos
(a) Ellipse - ' (b) Hyperbola
(¢) Line (d) Parabola
]I ANSWERS ,l

1. (b), 2. (), 3. (a), 4. (c), 5. (a), 6. (b), 7. (d), 8. (a),
9. (a), 10. (b).

4.

| SHORT QUESTIONS |

Find the polar- equation of conic if directrix passes through the point.

(a) (5; 0) and € = (b) (5’1;_] and e:—;—

0=

Curve Sketching

2

(e) (6,-3?“) and e

©) (5, 3“) and e

Identify following

@) (-2 mande=

) (3,——’25) and €=

Sl o=

conic. Find intercepts and symmetry,‘ if any. Also sketch it,

(@) r=2+?:ose
®) r=2—cose
© ’=Z?1‘fco_se»
@ = e

‘Identify following curve. Also sketch them.

@ r=l+sin6
1
()] T T 3e0s0
© '=3+zose
@ r=r——
(e) r=§#os6
® r=1+:in0
@ r=l—:ose
B "= seine

© r=32 ;(:ine
@ r= 1+ 260059
@® r= 1- :ose
B 2eme
. 12
@ r= 2+ cos8
. 10
0 r= 2- sinf
W r=37 ;zine
@ r = —l_+ 2sin@ .
W r=3y ;ssine
(m) r= 3- gj:ose

(n) r = 1-- cosO

() r=2 - cosh

N ¥k n

. 14 2sin0
.15
re—

3-7sin@
_ 15
4 + Scos6

®
@

k) r

() r =2 + sin@
@ r=1+sin6
) r=1+ 2sin0"
(s) r=3- 2cbsé
® r=1-sind
(w) r= 3c’os-9

(v) r =~ 2sin@
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UNIT Reduction Formulae, Volume of a For n =3 and n = 2, (2) reduces to
3 | Solid of Revolutivn, Rectification, nely =27
: 3

= = fsinx dx = 2
Area of a Surface of Revolution 3o 3

1 172 4 In
. and Jy==Jg =~ fsmoxdx= -
[REDUCTION FORMULAE | 27 2% 22
Reduction formulae are used repeatedly to express the integral of a complicated function. Now, let n be an odd positive integer. Then by (2), we have, -
in terms of simple ones. The reduction formulae are usually obtained by the rule of integration J, = n-1 Ty
by parts. We propose to give ready methods for the reproduction of some of the more important : n
reduction ‘formulae. In the sections that follow, we develop the reduction formulae for the (=1 (n-=-3) I
integrals involving certain type of trigonometric functions. Most of the formulae are divided T oon (-2 "

into two parts — integral with and without limits. The former will be denoted by J and the
latter will be denoted by I, as a convention. While continuously discussing indefinite integrals,
for brevity, we may not mention the constants of integration, the presence of which is always =
assumed. Thus for example, we may write J' sin x dx = — cosx, instead of I sinxdx=-cosx+C,

n-10)n-3)
no (n=2)

n-1) (-3 2

n (-2 3
Now, let n be an even positive integer. Then by (2), we have,

A,

| INTEGRAL OF sin"x and cos"x | =

First we obtain reduction formulae for

2 _
I, = [sin"xdx and J, = [sin" xdr where n € N : o=ty
[:

n

n-2

1, = [sin"xdx (-1 (@-3),

n-4

n n-—2
= [sin""!xsinx dx (n-2)
= sin" ' x(- cosx)—j(n ~1) sin" " %x cos x(— cosx) dx (n-1) (n-3)
= 2= ]
= —sin""' xcosx +(n—1) | sin"~*x (1 - sin” x) dx n m-2) 2 \
= —sin" 'xcosx+(n—-DI,_,~(n-DI, c=h@=-3 1=
-2 22
= nl, = —sin""' xcosx+(n-N1,_, . no (=2
-1 -3)..2 P
: —sin""' x cosx n—lI () n-hn-3..2 )("2 )3 if n is odd;
= I, = e Hence I, = an=2)..
n S PR T O I
. — T — ifniseven,
By (1) we get, " nn-2)..2 2
1 Al
sin"'xcosx | m-1y : xi2
=T n A n "t . Now we find I, = [cos"xdx and J, = [cos" x dx, for n € N.
0
- . (2
= B‘;ljn—z @ I, = J'cos"xdx = jcos""xcosxdx
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Integrating by parts and proceeding as earlier we get,

n-1

1, = cos" "' xsinx + 1.,
n n
(i-Dr=3..2 (”; 3)3'" 2 it nisodd;
and I, = nn-2)..

n-N@n-3).1=xn

— if niseven.

nn-2)..2 2

Example-1 : Evaluate | cos’ x dx

Sclution .:
= Icos7xdx
cos®xsinx 6
= 22202 L2,
-7 7
4 .
Further, Is = M+113,
5 5
2 .
cos“xsinx 2
where, I3=———+=1
. 3 3 3!
2 . -
cos 2
= 08 xSy + = jcosx dx
3 3
cos’xsiny 2 .
= —————— + = sinx
3 3
cos*xsinx 4cos’xsinx 8 |
= 15 = + —sinx
5 15 15
cos® xsinx 6costxsinx 8cos’xsinx 16sinx
= I = ———+ + +
7 35 35 35

n/2

Example-2 : Evaluate Jsm x dx

Solutwn
"z
jsin'oxdx = 7
0 10-8:6-4

Reduction Formulae, Volume of & Solid of Revolution, Rectification, Area of a Surface of Revolution 16?'
_—__—__—_____:__——__——_______—_—___—_____—__—_——————-——-———-——

* sin‘®
Example-3 : Evaluate {ﬁ?o'se_)’
Solution :
- we can write the given integral as
4

2sin 9 cos 9
H 2 2

I 2

[ 2 0
2¢c052 2
( COs 2)

Letg—t'l‘hende 2dt, Also, 8 =0 = ¢t ==

d6 = I4s1n‘ :d@

x/2

Hence, the given integral becomes 4 Ism t2dt =

Example-4 : Evaluate jx’ l+x2 dx
d 1-x

Solution :

Let x? =cos@. Then xdx=-%sin‘9dé.'Alsox-'-¢0 = '»9=§ and x =

Hence the given integral becomes

0 and 0 =1 =>It
gdlm _ 3n
4.‘2 21_' 2

1+cos® 1
- Cos s 0de =
2{/[2 1 co esm 0 3
xlz
= - Ico»26(1+cosﬁ)d9
=1 J,' 2()d9+-— jcos 040
25
11n 12
Ry M
222 23
. r o1
= —+=
8§ 3
_3n+8
24

Calculus /2018 1 22
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Solution :

Let 3 = tan®, Then 3x2dx =sec?0do. Also, x =0 =0=0andx > =0 - E.
2

Hence the given integral becomes
®i2

%2
lj'seced()——jccs odo = 142 _ 8
3] 35.3 45
. 1
Example-6 : Evaluate I=[x’sin”xdx.
| : xrax.
Solution :
1
= [(sin™ x) x* dx
0
= | sin” x—- —_—
oJ— %

1
=X _I.I dx
12 69.1-
T
Let x = sin®. Then dx = cos® dB. Also, x = 0 = 0 = 0andx-1=>9--2-
n  1™sinf0
= ——— cos9 do
Hence, I 12 6 { cos
= r_1 j'sinsede
12 6 3
n_153.1x_® 5t U=
=12 66422 12 192 192

[INTEGRAL OF sinPx cosix |

Now we obtain the reduction formula for I, , = jsin"xcos"xdx and

it
= "_[sin’ x cos' x dx, where p, g are positive integers.

Reduction Formulae, Volume of a Solid of Revolution, Rectification, Area of a Surface of Revolution 171
Ip’q = j sin”x cos? x dx

= [sin”~" x (sinx cos? x) dx

g+l ) g+1
= sin?~! fos’ x 1. 1) i =2 cos?t! x
x( 741 J.(p 1) sin x cosx =3
sin” 'xcos*'x  p-1
= - + J.sin”'zxcos"x 1 - sin?
q+1 qg+1 ( x) dx
__sin”"xcos""x+p—1 p-1
g+1 g+1 P=2,q g+1 ny .
Hence,
p+q sin " 'xcos?t'x p-1
+1 P57 + Loy
q q+1 qg+1
_sin”'xcos’t ' x  p-1
= g = + I,- o (D)
P P+q ptq "
Also, L, = [ sin? x cos? x dx
= fcos?™" x (cosx sin” x) dx
Integrating by parts and proceeding as earlier we get,
sin”*!'x cos? ™' x -1 ‘ '
1,, = +11,,., L. @

P p+q Pty

n/2

Now we find J,, = [sin” x cos? x dx, where p, g are positive integers.
0

From (1), we get,

/2
_ |sin”'xcos?t x ' L Pl
p+ta |, p+a

P9 P24

p-1 N
prg ®
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) 2 — in? 4

Example-5 : Evaluate | ad — dx Ipg = | sinx cos? x dx
, o\’(l +x)

Solution : = [sin?"' x (sinx cos? x) dx ’
: ) T . I
Let x3 = tan®, Then 3x?dx=sec?0d0. Also, x =0 =8 =0and x > oo = 6 = —. g+l : gel

: 2 = sinP x-S 2 +'[ (p-1)sin” 2x cosx =%
Hence the given integral becomes : q+1 CL +1
1 *?sec’® 172 14.2 8
224 = = [cos’0df = ~ —= = —. sin” 'xcost*'x  p-lp . ,- .
3 !sec79 3 £ 35.3 45 = - il jsm” 2xcos? x (1 -sin®x) dx
q+1 q+1
1
N = 5 sin~! .
Example-6 : Evaluate I i[x sin” x dx . i —sinp—lxc05q+l p-1 . p-1
Solution : q+1 q+1 p-tg " g+1 ™
Lo s Hence,
= f(sm x) x° dx
0 P'HIIM ____sin”"xcds""'x+p—11 v
{ "]l | : vt q+1 g+1 772
= |sin” x-g- J‘
041-x? inp=1 g+1
= L = _sin?  xcos™ x p=1 1., )
LI ptq ptqg " " "
= — ——I dx
12 6, - .
Also, I, = [ sin? x cos? x dx
Let x = sinB. Then dx = cos® d0. Al = = = l[_ :
0, x=0=>0=0andx=1=80 5" = ICOS""'x(cosxsin"x)dx
12 .6 .
Hence, I = _11% _%"I sin :c 0 db Integrating by parts and proceeding as earlier we get,
n‘/)z " I = Sin"”xcos""x+ g-1 I ,
=L fsin®0do e p+q p+qg 7’ b @
12 o
w2
3. - in?
_F_1531m _x 5t lm Now we find J,, = jsm xcos?x dx, where p, ¢ are positive integers.
12 66422 12 192 192 ° '
From (1), we get,
| INTEGRAL OF sinfx cosfx | n
sop-l g+t "
' . y = _|sin’ " xcos’ x p=1
Now. we obtain the reduction formula for I, Isin’xcos’xdt and P4 [ p+q . +1,+qJI’-2.q
n/2
Jo0 = { sin x cos? x dx, where p, ¢ are positive integers. _p-1
T ptgq MM )
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v'-A'vRepea‘tjng the 'compu_tations in (3), we get,

— Sorr— S
———
]

7 . p—~1t p-3

Ak
prqptq-274

p-1 p-3 p-35
- J -6q —
p+qp+q-2p+g-4 P

p-1 p-3 2
J =] Ptapta-2 ¢+3
p-1 p-3 1 J
prqp+qg-2""q+3"°

J,o when pis odd;

2 when p is even; '

/2 . :
= J'sinx cos? x dx
0

[cos"+l x]m
L og+l )

1

qg+1 .

n/2 °
= [sin®x cos? x dx
?

R Y
= fcos"xdx
0 . .
Thus when p is odd and g is any positive integer, we have,

J = p-1" p-3 21
P4 prqp+qg-2 q+3q+l

’ =2 . . .
using the reduction formula jcos"xdx we obtain the following. When p is even and
0 .

q is odd,

I = p-1 p-3 1 q
P4” prgp+q-2 q+2 q 4-

Reduction Formulae, Volume of a Solid of Revolution, Rectification, Area of a Surface of Revolution™" 173

When p, g both are even,

] p-1 p-3 1

xq—lq—3
rq — 5
ptqgptg-2 q+2

1
q q-2"2

T
x

p-H(p-3)..g-N@g-3..x

Hence, (P+a)(p+q-2).. 2
ence, J,, (P-D(p-3)..(g-D(g-3)...

(r+q)(p+qg-2)..

When p, q both are even;

otherwise.

1. Remark :

One can see with'the practice that when p (respectively, g) is odd, I, , can be evaluated
by substituting cosx = ¢ (respectively, sinx = ¢). In fact, the method of these substitutions works
when one of p, g is odd and the other is not an integer. However, when both p and ¢ are

_even, the use of reduction formula should be preferred.

Example-1 : Evaluate [ sin®x cos®x dx
Solution : '
I = Jsin®xcos®xdx

sin®xcos’x S
—+ =1,
8 8 ~

sin"xcos’x 3
where, L4 = s + s L.

sinxcosx 1 I
Iy = "‘—'—"4 +Z 2.0

- sin*x cosx
="y
4
sin® x cosx +lj 1-cos2x
4 4 2
sinxcosx 1 sin2x
=z —— X
4 8 2

i—fsinzxdx

sin® x cosx
=74
Putting all these values. in I 5, we get,
sin*x cos’x  Ssin® x cos® x . 5sin® x cosx . 5(x — sinx cosx)
b = g 48 64 128

+ é— (x — sinx cosx)
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Example-2 : Evaluate [sin®x cos®xdx.

Solution :
Here p = 4 and ¢ = 3, which is odd. Hence we follow the direct substitution sinx = ¢.

Then cosx dx = di. As a result, the given integral becomes

frra-far = [ -1 dt

Iz

sinx  sin’x

5 7

_E v
5 7

Example-3 : Evaluate I tan® x sec® x dx

Solution :

Let secx = t. Then secx tanx dx = dr. As a result, the given integral becomes

ror
2-Dtdt = [ -1dt = ———
NGRS Jut—idr = T -
_ sec’ x _ sec’ x
Ts 3
. 5
Example-4 : Evaluate J‘ C?s x
sinx
Solution : '
Here p = -1 and g = 5, an odd positive integer. Hence we follow the direct substitution

sinx = ¢. Then cosx dx = dt. As a result, the given integral becomes
(I -132dt
Lis = f‘—_

1- 2 4
=J’ 2t° +1¢t dt

t

= J(-}—Zr+t“)dt

4
logt -2+ L
4

n"x

1l

. . si
log(sinx) — sin? x +

Solution : . o o

Reduction Formulae, Volume of a Solid of Revolution, Rectification, Arca of a Surface of Revolution 175

xl2
Example-5 : Evaluate [cos® x sin3x dx
[

We can write the given integral as

x/2
3 Icos xsinx dx -4 jcos xsin®xdx

" =2 . o 3
fcos* x (3sinx — 4sin’ x)dx
0

31,312

3
34 = =

5:3:1 7-5:3

. n/4
Example-6 : Evaluate [cos’ 2x sin 4x dx
0

Solution :

Let 2x = 6. Then dx = 52- Also, x=0=> 0 =0and x=~:-:~ = 9-—E Hence the gwen

N

imegral becomes

do

"2
jcos 9 sin*20 — ) = % Icos:‘ 0 (2s5in@ cos8)* 4o
0

xi2 .
8 fcos’ @ sin*0do
0
6-4.2.3.1
11-9.7-5-3-1

128
T o1ss

—_

2
Example-7 : Evaluate Ix“ 2%~ x* dx
0

Solution :

Let x=2sin?06. Then dx = 4sin® cos® dO. Also, x =0 = 6 = Oandx-2=>9- g
Hence the given integral becomes ' ,

x/2
szm 9‘/4sm 0~ 4sin* 0 (45in0 cos8) I6 = 64 jsm 9cos Gd(-)

7.5:3.1 ©_x
10.8.6.4.22 8"



176
Calculus

MM—;’_—‘
, : .
. Example-8 : Evaluate [x*%(1- x)¥? gy

B Solution :

Let x = 5in20, Then dx = 2sin@ cos® df. Also, x =0 = § = 0 andx=1=0= = - Hence
the given mtegral becomes '

n/2
2‘[vsin 0 cos* 0d0=2 3:1:3. l.g 3n
0

8.64-.22 128

LINTEGRAL OF tan"x and cot’x l

Now we obtain reduction formula for

]tan"xdx and J, = jtan xdy, where n € N.

I, = [tn"xdx
= [t vt s e

= _[tan"'".x (sec? x— 1) dx

'[tan'?".zx secz.xdx—rtan"'zx'dx |

“tan""'x
n-1

-1, _,.

x/4

_[tan"xdx_
v

n-1 T4
[tan x] -
n-1

 Also, - I

0

_ 1

=]

n—1
Proceedlng similarly, we ﬂnd

n- 2

1
I, = Icot"xdx =.,_cot". x—I,, 2 and J = jcot"xdx —-—i--J,._,.
n-1 - x/4 -

Reduction Formulae, Volume of a Solid of Revolution, Rectification, Area of a Surface of Revolution 177

Example-1 : Evaluate [ tan® x dx
Solution :

n-l

—1

We know that I, ~Itan x -1,_,. Hence

tan X

I

~1,, where

tan® x

Iy ~1I,, where
I = tanx - Iy = tanx - [tan’xdx = tanx - x.
Puiting all these values in Ig, we get,

tan’x tan’x

= - + tanx — x,
Is 5
x/2
Example-2 : Evaluate [cot®xdx.
x/4
Solution :
. x/2 l H
We know that J, = [cot"xdx = ) —J,.,. Hence,
x/4 '
1 1 ' |
= e - = —-—=1=] _
J4 3 3 [ o]
1
= '5—1"']0
n/2
—-=14+ !cot x dx A
/4
1,2 n_z2_2
=37°7274 4 3
3n-8

Calculus /2018723
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. . . et
Replacing g by ¢ + 2 in this equation, we get,
INTEGRAL OF sec’x and cosec’x 4
r I sin?*' x cos?*! x g+
n pq+2 = . +qg+2 M
Now we obtain reduction formula I, = J'sec xdx, wheren € N, n > 1 prqg+2 p+q
2 Hence,
n-2
I,,=J'sec x sec” x dx I sin”"'xcos"”x.,_p"'q"'zl L provided g # - 1. .. ().
= - g2
= sec” " ?xtanx — [ (n—2)sec” " xsecx tan’ x dx e = g+1 g+l
' 2 2 2y (sec?x —1) dx The formula (1) is useful when g is a negative integer other than —1.
= "ixt —-(n- sec” ™ “ x (sec” x -
= seet T tmx=n )J Similarly, we get,
-2
=sec" “xtanx—-(n-2)(1, -1,_,) pl 0+l . .
’ g = Sin’ % cos x+p+q+21p+2'q, provided p # —1. . @
I _sec"_zxtanx+n—21 ’ p+1 p+1
= " n-1 n—1 "% The formula (2) is useful when p is a negative integer other than — 1.
-2 .2 -
t - 1 dx,
Similarly, we can find I, = [ cosec"x dx = - cosed’ ': cotx . n f I, Example-1 : Evaluate [sin®xcos™ x
n- n-
: . Solution :
6
Frample-1 : Evaluate fsec * Here q is a negative integer other than -1, so,
Solution : I sin”“xcos"”x+ ptqg+2
"t - pg = ) pg+2
We know that I, = [sec"xdx = sec’ xtanx n-2 I,_,. Hence, q+1 g+l
" " sintxcos?x 1
sec*xtanx 4 Hence, I, 3 = — __2[2’_,
Ig = — + 5 1,
.3 -2
sin"xcos “x 1. . -
sec*xtanx 4 [sec’xtanx 2 o 30 XS ¥ - = [ sin®x cos™ x dx
- 5 3k 2 2
5 5 3 3
, sinxcos?x 1 J' 1~cos’x 1
4 - -
o See xtanx+i sec xtanx+_2_tanx > S
5 ] 3 3 . .
sin"xcosx 1 )
sectxtanx 4 8 = -—-—2————5 f(sccx ~ cosx) dx
= ———> ¢+ —sec’xtanx + — tanx. .
5 15 15

| INTEGRAL OF sinx costx REVISITED |

In this section we obtain the reduction formula for Lg= f sin” x cos? x dx where at least

one of p, q is negative integer.

R q-1 -
We know from (2), I,,q o 1 XCOS X +4 L | S
" p+q p+gq

= M -1 log (secx + tanx) + l sinx
2 2 2

= 1 sinx tan® x — 1 log (secx + tanx) + 1 siﬁx
2 2 _ 2

1. :
= 5 sinx (tan’ x + 1) —% log (sec x + tanx)

1. .
= S sinx seclx — -217 log (secx + tanx)
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_m T sint@ w2
Evaluate . : 36. = i3
f the following : : [ N £ (1 + cosB)? 46. fsm’”xcos-‘xdx
1. Sil‘l7 X dx ———————— . .2 .
2.2 s J - /2
(a*x? - p?)*"? 17. Iw dx 47. Ism x cos'® x dx
2. fcos”x dr 21 f S e o 1+cosx
- . cosec x
3 .10 ! xG K‘/[Z' 3 4
. [sinxdx 2. [sectxds 38. | — dx 48. [sin3xcos®x dx
- . . 0 -X
. .6 . n/2
~ psin®x .
4. | P dx 23. [sec*xd 3. ]‘3 1 dx 49, _[Sln44x cos® 2x dx
. I . 1 0(1 + x2)712
s, a4 24. s . T
e sin® x cos® x Joot” x dx 40 j»xz(2—x2) 50. £(1+ S )9/2
1 25, [tan*xdsx o y1-4 ,
6. —_—dx X
o I sin3/2xcosﬂz e 2 51. I(] 712
6 a1, [#@4- )" dx +2)
g [Qocos™ (- cosn* 26, [tanxdx ) ,
. . 5/2
(1+ cosx)'"s ,:2 j_ 5 52. {x 2-xdx
; ’ 42 dx :
8. sec*’? x cosec'®"x dx 27. fcot‘xdx * 4 2
I 3 - ] x Ja oyl—x 53, £x9’2(2a —x)"“ dx
. /9
9. Jrecxcosec i dy 28, Joosx s PR P L &
10: Isiandx N 0 [} 1-x* 54, £xz 2ax — x* dx
6084 x - 20 i Kf;insx & 44 .j: xz & . xg .
.4 5 . T : 67 55. I-—————'
11. Ism xcos” xdx 01 +x%) o4+ x%)
. R : /6 1
12, [sinxcos®x dx | 30. Ism 3xdx 45, [xfsin?xds 56. } 21— )M dx
. _ d :
13. [sin®xcos®x dx B .
I ‘ 31, - Icos°_2x dx 57. j'sm’xcos"xdx. (Express the answer in terms of cosine function.) \
14. [sin®xcos*xdx o .
: I . . 58. Icossxsin"xdx (Express the answer in terms of sine function.)
15, [secxtan®xdx 32, [2oy1-x*dx
J x ‘ { [ VOLUME OF A SOLID OF REVOLUTION |
16. [cot®xcos®xdx - 20 - ,
] 33, [ Qav- )" dx [VOLUME OF A SOLID OF REVOLUTION BY CIRCULAR msst
. . 4 . ..
: 17.- I sm xcc?szxdx , 0“ Let y = f(x) be a continuous function such that f(x) = 0 on [a, b). Then the curve
18, Itanzisécxdx 4. xjcos“ 2x cosx dx y = f(x), the lines x = a, x = b, and the x-axis form the boundary of the area ABCD
) ) (Fig. 1(a)). If this area is revolved about the x-axis, we say that it generates a solid of revolution
. .[ @+ PR 3s. xj'ﬁcos“ 3x sin® 6x dx (Fig. 20
o .
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‘Our problem now is to define the volume of a solid of revolution and see how to compute
the volume. We divide the interval [a, b] into n subintevals, and on each subinterval as a base
draw a rectangle, the altitude being the ordinate of the curve drawn from some point of the
base. The widths of the rectangles are Ax), Ax, ... Ax,, and the altitudes are £(1,), £(t), ... £ (t,).
Now suppose these rectangles are revolved about the x-axis. Each generates a right circular

cvlinder, or a disk. The volume of a right circular cylinder is nr2h, where r is the radius and
h is the altitude. Then the sum of the volumes of the n cylinder is

v, = ;ln[faknz Ax, .

If all the Ax’s are quite small, we see intuitively that the solid swept out by the rectangles
almost coincides with the volume swept out by the area under the curve. Hence we are led

to define the volume of the solid of revolution of the area ABCD as the limit of V,as n oo
and all the Ax’s — 0. We then have

b b

V=xn[lfnld, o V= n [y? dx . ()
Similafly, the area bounded by x = f(3), y = ¢, y = d, and the y-axis, when revolved about
the y-axis, would sweep out a solid whose volume is given by

d d
V=n[lfold, o = n [y

c

- (2)

'
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. Example-1 : '

The area bounded by the curve y =44~ x, the line x = 0 and the lirie y = 0 is revolved

about the x-axis. Find the volume of the solid thus generated. Also find the volume if the
area is revolved about the y-axis.

S
Solution :

Volume V = ‘K,[}’de

4
= 7 [(4 - x)dx
o
2 . 4
= ,:[(_4-_")(_1)]
. 2 0
n
= —5[0—-16]
= 8n

Also volume of the solid made by revolving the area about the y-axis is

d
V== Ixzdy

2 . ) ' )
=nf@-yYdy [P =4-x=x=4-)]
0

2
= = [[16 -8y + y*1dy
4]

3 572
-5+ 7]
o

=7 32-'6—4"i'EE
' 3 s

T
=I5 [480 — 320 + 96)

_ 256n
15 °
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Example-2 : ' ’

The area bounded by the parabola x2 =. 8y and the line y = 2 is révolved about the line

" ¥ = 2. Find the volume of the solid thus generated.
Solution :

Frem figure we say that the altitude of the rectangle is 2 —

Y

y.

AN\ L.

x2=gy

\J ¢42)

2-y

)

y=2
42

Hence the element of volume is dV =t (2 -y)ldx

Required volume is

n
y

O Sy S
N

: |
o |x,

S——

&

x-axis to generate a solid. Find its volume.
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32 16
= 20|16 - -+ —
3 5

f_;‘ [240 — 160 + 48]

256
15

Example-3 :

The region between the curve y = Jx » 0 < x <4 and the x-axis is revolved about the

Solution : y x=4 -
Required volume m)"’ y =K
b 4
Ve=n[yde = nfxds
a 0
x2 ! )
=T|—
{2] LA Ty
° ° o </
T
= —[16-0
2[ ]
= 87

Example-4 :
The circle x2 + y2 = a2 is rotated about the x-axis to generate a sphere. Find its volume.
Solution :

Required volume

~<
-—

b
V = ﬂIyde

= ‘j(az - dx (0 xR +yr=a?)

-a

Calculus / 2018 / 24
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Example-5 : Example-6 :

Find the volume of the solid generated by revolving the region bounded by y = Jx and Find the volume of the solid generated by revolving the region between the y-axis and
the line y = 1, x = 4 about the line y = 1. the curve x=2\/—;, 0 £ y £ 4, about the y-axis. y '
Solution : Solution : : x';‘ﬁ !

Fr_om figure we say that the altitude of the rectangle is y - 1. V = n? xidy 4 i

Hence the element of volume is dV = n(y — 1)2 dx A

Required volume / 4
, x=1 =4 = n[4ydy
0
v = |4V
'[ (x.y) 5 4
4 41:[ 2 ]
- - N2 -1
= '[zt(y 1 dx ; y A " 0
= W = 4z {8]
J/ . . o X
. . ~ ane
- I‘It [\/;-— I]de / = 32n. ) ' &J
' 0 1 4 " ’
. ‘
=7 ,If[x ~2x + 1dx Example-7 : :
. Find the volume of the solid generated by revolvmg the region between the parabola
- [ﬁ_ 4x*"? +x} x = y2 + 1 and the line x = 3, about the line x = 3.
2 3 1 Solution :
32 — From figure we say that — V2 g y<\2
= 71:[(8 ey + 4)—[5 -3 + Iﬂ From figure we say that the altitude of the rectangle is 3 — x.
Hence the element of volume is dV = n(3 - x)2dy ) xz3 |
32 3 4 .
=nlliz-221]-12_2 s V=|adv
. d ——7:'
4 1 ' = [re-nta ) 5%
=N ———
3 6 € 3-x v
V2 ':x
- = f[2 YEdy (v x=y2+1) of 1 3
6 -7 ¥
n = 2 e -
= T =21 [[4-4y° +y'1dy- ;
6 0 (3-12)
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V2
38
21:,:4y—5—;i—+15—J
o

2n[4f—§[£+ﬂJ
. 3 5

--=4Ji‘2n[l-3+l
375

) Sﬁn[15—10+3]

15

_ 64\/51t
To1s

| EXERCISE I

In each of Problems 1-17 find the volume of the solid generated when the area bounded
by the given curves is revolved about the given line,

1. y=x y =0, x=3; revolve about the x-axis.

2. y=xx=0,y= 3; revolve about the y-axis.
3. x+y=4,x=0,y = 0; revolve about the x-axis.
4. x+y=4,x=0,y=0 revolve about the y-axis.
5. y*=4x, x=4; revolve about the x-axis.
6. y>=4x, y=4, x = 0; revolve about the y-axis.
7. y=1-212y = 0; revolve about the x-axis.
8.. y=1-x% y=-1, revolve about the y-axis.
"9, y=1x1y=0,x=3; revolve about x = 3.
- 10, y=x,x=0,y=3 revolve about y = 3.

11, 'y = 4x, x = 4; revolve about x = 4.

12, y2 = 4x, y = 4, x =.0; revolve about y = 4.
13. y =1-2, y = - 1; revolve about y = ~ 1.
14. y = x2 - 2x,'y = 0; revolve about the x-axis.
15. y = x2 — 2% - 4, y = 0; revolve about x =1.
16. y = 4x — x2, y = 0; revolve about the x-axis.

17. y=3x-x4,y=0 revolve about x = 2.

Reduction Formulae, Volume of a Solid of Revolution, Rectification, Area of a Surface of Revolution 8¢

| VOLUME BY THE WASHER METHOD |

Let y; = f(x) and y; = g(x) be continuous functions such that f(x) > g(x) > 0 on the interval
(a, b). Then let the area bounded by the curves and the lines x = a and x = b be revolved
about the x-axis. A hollow solid of revolution is swept out. Clearly the volume of the solid

is the volume generated by the area under the upper curve’ minus the volume generated by
the area under the lower curve. That is,

b b
V= n_[y%dx—nfylzdx
d a

or, combining the integrals,

b ) y
Vernfol-yhd .. () (xy2)

a . ¥2=1%)

We could think of Formula (1) as being the "
limit of the sum of volumes of washer-shaped
solids. Referring to Fig. 9, we see that a typical (*,¥y)
solid is generated by revolving the shaded
rectangle about the x-axis. The volume swept out
by this rectangle is given by

T Vi=0%)

dV = myydx —myldx = w(yi - y)dx,
“and this is the element of volume appearing in Formula (1).

Example-1 :

Find the volume generated by revolving about the x-axis the area bounded by the

|

parabolas x2 = 2y and x2 = 12 - 4y.
Solution :
First we find point of intersection x2 = 2y and x2 =12 - 4.

= y=12-4

= 6y =12
= y=2
x2=2y=4

= x=%2
(-2, 2) and (2, 2) are point of intersection

Also 2 S x <2
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(’ 22)

x*=12-4y

! 2
From figure we say that upper curve is x2 = 12 — 4y ie. y = 3 ~ a

4

2
and lower curve is x? =2y ie. y=2_

b
Vo= n [ -yl
“

S
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1
[\

a
Oy
—

O
{
w
[\b) | =
[})
1
w
—
al®,
—

80 j,
96
= -4-=
r [18 80]
6 64 128%
= —=|l=2n|—=| = —
2n[14 ] 1:[5] 5

Example-2 :

The smaller area bounded by x2 + y2 = 2 and x = -;— is revolved about the y-axis. Find
the volume of the solid thus generated. y x=4

Solution : —— g.‘%ﬂ]

First we find pint of intersection

a
Putx=§ in x2 + y2 = g2, we get

2

.a_+y2=a2,
4 X
2 2
= y=gt-8230
4 4
+

2 ~V3a and f_’__3ﬁ
2 2 2 2
are point of intersection

- 3a \/ga
Also fy<s——
)

From figure we say that upper curve is.x2 + y2 = a2 ie. x = +a? - y?

and lower curve is x =

INREN
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d
V=[G ~x) dy

= 2% [ﬁi - 3J§a3:|

Example-3 :

The region bounded by the curve y = x2 + 1 and the line y = — x + 3 is revolved about
the x-axis to generate a solid. Find the volume of the solid.

Solution :

' 'Bycomparingy:x2+1andy=—-x+3
wegetx2+1=-x+3
= x+x-2=0
= (x+2)x-1=0
= x=-=2,x=1
Forx=-2y=-x+3=2+3=5
Forx=1y=—<x+3=-1+3=2

Point of intersection are (-2, 5) and (1, 2).

Reduction Formulae, Volume of a Solid of Revolution, Rectification, Area of a Surface of Revolution 193.

Y

(-2,5) y=x41

n
V]

From figure we say that — 2 < x < 1, outer curve js y = — x + 3 and inner curve Is
y=x2+ 1

b
v = nfly; -yildx

1 .

=@ [[(-x+3)* - (< + 1)) dx
-2
1

=7 [ - 6x+9-x' 22" ~1]dx
-2

1
=T J‘[—x2 —6x—x*+8]dx
22

3 5 !
=T :—i——3x2—£—+8x
3 5 ”

-1 43 ligl- §—12+£—16ﬂ
=n[(-3——3—5+8) (3 £

Calculus / 2018 /25
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=n:_1__l+5_§—2+28]
5 3
33
= m|-3-2433
“{ 5 ]
33
= n|30-2
"[ 5]
_ [150-33] _ 1
- 5 T s

Example-4 :
The region bounded by the parabola y = x2 and the line y = 2x in the first quadrant revolved
about the y-axis to generate a solid. Find the volume of the solid.

Solution :
By comparing y = x2 and y = 2x we get x2 = 2x
= x2-2x=0

= x(x-2)=0 y
= x=02
Forx=0,y=2x=0 C_)
Forx=2y=2x=4 y=*f fy=ax
Point of intersection are (0, 0) and (2, 4).
From figure we say that 0 < y < 4, outer curve (24)
isy =x2ie x= \/—): and inner curve is y = 2x
ie.x= 2.
2 d
V=[G - 5D dy
[
4 y Y}
=T -1=11d
! [«/5) (2” y
4 yz
=T — d [0) X
Jlr-%]s

B
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[ VOLUME BY THE CYLINDRICAL SHELL METHOD |

It often happens that the volume of a solid of revolution can be found more easily by
using cylindrical shells. The element of volume in this case is a thin hollow cylinder which
is generated by revolving a rectangle with a narrow base about a line parallel to its altitude.

Suppose the area bounded by y = f(x), y = 0, x y
= q and x = b (Fig. 14) is revolved about the y-axis. J v=i0)
Imagine now that n narrow rectangles are constructed
from a to b such as the kit rectangle in the figure. The
altitude of the rectangle is the ordinate of the curve at
some point X, of the kh subinterval and the base is
equal to x;, ~ x;_; = Ax;. When this rectangle is f(,l-k)
revolved about the y-axis, a hollow shell is swept out.
Since the outer radius of the shell is x; and the inner
radius is x;_1, the volume AV, of the shell is given by

AV, = n(x: —xz_l)f(‘x;()
T (x, +x-p) (O = X q) f(xllc)

- (x +x_4)
2
2mx; f(x) Ax,

0 a  RetXkX b

2

fx) Ax,

where, x; = 5 (% +x,_,), the midpoint of the kth subinterval. Hence the volume swept

out by the n rectangles would be

v, = k}ijlzm;' £ Ax,. \

It seems reasonable to call the limit of V, as n — oo and each Ax; — 0 the volume swept
out by the area under the curve from x = a to x = b. Now if x; and x, were the same, we
would express the limit by ‘

b h .
V=2n[xfx)dx o V=2n|xydx o (1)

We cannot conclude, on the basis of our previoué discussions, that this integral actually
gives the limit. Its correctness follows, however, from a theorem due to the American
mathematician G.A. Bliss (1876-1950), which we quote, *

The Bliss Theorem. Let f and g be continuous functions on the interval [a, b]. Let the
interval be divided into n subintervals and denote two arbitrary points of the kth subinterval
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(k=1,23,.,n by x and x;. Let Axy be the distance between the endpoints x; _; and
x; of the kth subinterval. Then if » increases indefinitely and each Ax, — 0, it follows that

. 5 ]
o, D50 g0 b, = 709 8 5.

In previous Section we defined the volume of a solid of revolution as the limit of a sum
of circular cylinders, and derived the formula for the volume. We now have another formulae
obtained by the use of cylindrical shells, which seems, to yield the volume. We have not shown
that the two methods are equivalent. It can be proved, however, that the application of the two
methods to the same problem will give the same result. We shall assume this « be the case.

Coming back to Formula (1), we observe that 27mx represents the circumference, y the
altitude, and dx the thickness of a cylindrical shell. Hence a typical element of volume is equal
. to the circumference of the shell times the height times the thickness. From this fact, we see
that the shell method is adaptable when the area is revolved about the x-axis or some other
line. Accordingly, it is the idea embodied in the formula, rather than the arrangement of letters,
which is worth remembering.

Example-1 :

* The region bounded by the curve y = x , the x-axis and the line x = 4 is revolved about
the y-axis to generate a solid. Find the volume of the solid by shell method.

Solution :

q),

(xy)
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From figure we say that 0 < x < 4

b
V = 2r [xydx

a

4
amfudxde (o y=+x)
0

524 4n
72 I A R FVLES I ua S
5/2), 7 s 5

Example-2 :

The region bounded by the curve -y = \f4x - x*, the x-axis and the line x = 2 is revolved

about the x-axis. Find the volume of the solid by cylindrical shell.

Solution :
From figure we say that
Shell height = 2 — x
Shell radius = y
and 0 S y<2 xy)

Also y =./4x - x’ 2x

= yl=4x-x
X —4x+4+y'=4

(x-2*+y* =4 o
@2-x+y'=4

.2—x=,'4—y2

b
21 [(shell radius) (shell height) dy

L

\Y%

i}

2
2n [y (2 -x)dy
0

2
= 21 j'y\/4 - )’2 dy
0

Let 4—y2 =¢* then -2y dy = 2t dt
ydy=-tdt
Fory=0,r=2 and y=2,1t=0
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0 From figure we say that
V = 2m [o(=1dr) Shell radius = 4 - x
2 Shell height = y
T2
= 2 [1* dr Also-2<x<2 L
0 d ] . . 7
2 K V=2 j(shell radius) (shell height) dx -
3 .
= 2N t_. ¢
3 b 2
=2 [(4-x)ydx
3] )
= 2r| -
3 z 2
=2 [4-x)(@4-x")dx ¢ x*=4-y)
=3 i
= 2m [(16 - 4x - 4x* + x*) dx
Example-3 : -2
The area bounded by x2 = 4 — y and x-axis is revolved about the line x = 4. Find the r 4t 5t 2
volume of the solid thus generated. = 2m|16x - 2x° “T"'—[:l
Solution : - -2
y r ’
= on|[32-8-32 44 —[-—32—8+3—2+4
i 3 \ 3
x=4 -
= 21|64 - ﬁ]
L 3
= 128n [1 - l]
' 3
o |
X
—————— = 128n [E:l '
‘ 3
512n .
y =73
\ .
N [ EXERCISE | '
-2 o 2 X Use the washer method to find the volume of the solid generated when the area bounded
C‘) by each of the given curves is revolved about the given line. ‘
1. y=uxy =0, x =3 revolve about the y-axis.
- ' 2. y=x,y=0,x=23; revolve about y = 3.
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3. X+y=4,x=0,y=0; revolve about x = 4.

4. y2 = 4x, x = 4; revolve about the y-axis.

5. ¥ =dx,y=4 x= 0; revolve about the x-axis.

6. Use the cylindrical shell method to find each of the volumes of Problem 1-5 above,

Find the volume defined in each of Problems 7-17 by either the disc, washer, or shell
method. ' '

7. y=x2-2y = 0; revolve about x = 2.

8. y=4x-x2 y = 0; revolve about the y-axis.
9. y=4x-22 y=0; revolve about x = 6.

10. y2 = x3 x = 4; revolve about y = 8.

11. y2 = 3, x =4 revolve about the y-axis.

12, y2 =x3, y = 8, x = 0; revolve about x-axis.
13, 2
14. y2
15, 32
16. y2
17. y2 =13, y = 8, x = 0; revolve about y = 8.

%3,y =8, x = 0; revolve about x = 4.

By=8x=0 revolve about the y-axis.
x3, x = 4; revolve about x = 4,

n

%3, x = 4; revolve about the X-axis.

18. The smaller area cut from the circle x2 + y2 = 25 by the line y = 2 is revolved about
the x-axis. Find the volume of the solid which is swept out.

| VOLUMES BY SLICING |

In the preceding section we defined the volume of a solid of revolution as a limiting
summation of the volumes of circular disks, The bases of the disks, or slices, were all
perpendicular to a line. We now extend the idea of the summation of volumes of slices to
find the volumes of certain solids where the slices are not circular.

Suppose that a given solid possesses parallel Y
cross sections which are perpendicular to a line,
and that the area of any cross section is
expressible in terms of the distance from a point
of the line. We let the line be the x-axis and let \ \\
the solid extend from x = a to x = b (Fig. 18). \xm‘

9 77 ok
y A

. Then we ‘partition the interval [a, b] into — Lub

subinterval and pass a plane through a point of
~&ch subinterval perpendicular to the x-axis. If
the area of the cross section at x,.expressed in
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terms of x, is A(x), the volume of a typical slice is ZA(x) Ax. We indicate a summation of

b
slices by ZA(x) Ax and define the volume of the solid to be the value of the integral fACx) dr.-

Example-1 :

The base of a solid is bounded by the parabola 2y2 = 3x and the line x = 6. Every section
of the solid perpendicular to the x-axis is a square. Find the volume of the solid. -
Solution : '

Visualize the solid as resting on the base as shown in figure and extending outward from
the base. The shaded rectangle is the base of typical square slice with length 2y.

‘The area of the cross section at x is

A(x) = (2y)? = 4y2 = 2(2y?) = 2(3x) = 6x

\ =6
Hence volume of solid is ) x“ (6,3)
V = ]'A(x)dx !
; N\
= ‘6[63’ dx 7 y X
0 N \ )

= 3218 ° \

N |

v
Example-2 : _ | . '

A pyramid 3 m high has a square base that is 3 m on a side. The ‘¢éross-section of gxu
pyramid perpendicular to the altitude x m down from the vertex is a square x m on a Side.

Find the volume of the pyramid.

Solution :
From figure we say that the area of cross section at x is A(x) =

Y

The squares lie on the planes from x = Otox=23

Calculus / 2018 1 26
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Volume of solid is

A(x) dx

on__.e

x{(m)

1
o
2,

Example-3 :

A solid has a circular base of radius 4 units. Find the volume of the solid if every plane
section perpendicular to a fixed diameter is an equilateral triangle.

Solution :

Take the circle as in the figure with x-axis as the fixed diameter. The equation of circle
is x2 + y2 = 16.

The cross section ABC of the solid is an equilateral triangle of side 2y and area

A(x)

% 2y) V3y)

V3 y?
= 3 (16 - x?)

Also from figure — 4 < x < 4.

b 4
= JAM) dx = [V3(16 - x*) dx
a ~4

V3 []6x - —‘T
3 -4

ol g} e8]
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=3 [128 - %—8]
J3x128 [1 - ﬂ

' 2)  256Y3 _ 256
18| 2] = 222 = =2
V3 (3) E B

| EXERCISE
The base of a solid is a circle of radius a, and every cross section perpendicular to a
diameter is a square. Find the volume of the solid. .

A solid has a circular base of radius 4 and every plane section perpendicular to a dlameter
is an isosceles nght triangle having its hypotenuse in the base. Find the volume of the

_solid.

The area bounded by the parabola y= 4x and the line x = 4 is the base of a solid. Every.
plane section perpendicular to the x-axis is an isosceles triangle of constant height 8 whose

"base is a chord of the parabola. Find the volume of the solid.

A solid is generated by a variable square which moves with its plane perpendicular to

the x-axis. The ends of one side of the square are on the x-axis and the curve xy = 4,

Find the volume of the solid generated as the square moves from x = 1 to x = 4.

A solid is generated by a variable equilateral triangle .which moves with its plan'é"
perpendicular to the y-axis. Find the volume of the solid generated if the ends of a side

of the triangle extend from the line x = - y to the curve x = \/; and the triangle moves -
fromy=0toy=09, '

Find the volume of the wedge in Example-2 by using a slab perpendicular to the x-axis -
as an element of volume. Observe that sections perpendicular to the x-axis are re‘ctangles

Find the volume of the wedge cut from a right circular cylinder of radius 8 in. by a plane -

passing through a diameter of the base at an angle of 60° .with the base..

A pyramid is 60 ft. high, and every plane section x ft. from the base is a §qﬁare of side .

1 .
—(60 - x). Find the volume of the pyramid by integration. Check your result by using -
the formula for the volume of a pyramid. :

A solid has as its base the ellipse 4x2 + 9y2 = 36. Find the volume if every cross section
perpendicular to the x-axis is (a) a square; (b) a semicircle; (c) an isosceles right triangle

- with hypotenuse in the base. : '
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[RECTIFICATION |

| DERIVATIVE OF AN ARC |

Rectification is the process of computing the length of all arc of a curve, The curve may
have different representations, like cartesian, polar and parametric. So, we shall be dealing
with all the three forms, Besides, the curve could be expressed as a combination of arcs of
two different curves yielding a new closed curve. In this case, the length of arc will be its
perimeter. The idea of finding the length of arc is simple,

A curve is said to be rectifiable if it is possible to find its length.

| LENGTH OF AN ARC OF A CURVE |

m . Theorem-1 :

Let y = fx) be a cartesian representation of a curve C. Then prove that the length of arc
of C between two points A and B corresponding to' the x-coordinates a and b respectively
is given by

. v dy }
arcAB = J 1+(£—J dx

Proof :
Let s(x) be the length of arc of curve between fixed point A on the curve and the generic

' 2
point P(x, fA(x)). Then integrating -3%:"1 +[£—) form a to b, we have,

r 2 , b .
f 1+[%) & = ﬁ%dx = fds = s = s(b) - s(a)

= arcAB - arcAA ‘= arcAB

a

‘ “p Y}
Hence arc AB =J 1+(gx—) dx

m . Theorem-2 : ‘

Let x = f(y) be a cartesian representation of a curve C. Then prove that the length of
arc of C between two points A and B. corresponding to the y-coordinates ¢ and d respectively
_-is given by

d 2 2
ATLAB - J 1+(;—d;} dy
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e

»  Theorem-3 :

Let r = f6) be a polar representation of a curve C. Then prove that the length of arc
of C between two points A gnd B corresponding to the angle § = 6, ahd 6=9, respectively,

is given by

' 8 dr v
arcAB = J1 2+ g8
S do

Example-1 :

Find the length of arc of the parabola y? =4ax, (a > 0), measured from the vertex to

one extremity of its latus rectum.

2
2a°

SPU, Sep. 2014; Nov. 2010

Soln, ;
v
We can write the given equation as x=-‘a. Then d—y=
2 A
dx y* T
T+ — | = J1+-1—
Therefore, ( dy] Y
I
= — \Jy* + 4a*
2a ’ L (a,2a)
From the figure, we see that coordinates of
the vertex O and top end of the latus rectum L 0 @0
are (0, 0) and (a, 2a) respectively. Hence the ’
required length of arc is L' (a, -2a)
2a 2 )
arcOL = f 1+ & dy
° dy ) -

2. A\ 4
= L J"\’yz +4a2 dy Y
2a
2
= L[l Jy? +4a? +4% log(y + 4/¥* +4a2)]
2ai2

2a
[}

= El~ [2\/§a2 +2a®log(2a + 2as/§) -0 -2a? log2a]
a

=a [ﬁ +log (%ﬁz‘ﬁ)ﬂ .

= a[JZ +log(l +v2)]
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Example-2 :

(a) Find the entire length of the astroid x? 4+ =a*">.

SPU, April-2015, Nov. 2013, 2011
(b) Prove that the length of the curve x?/* + y2/ = g?/* measured from (0, a) to the point

(x, y) is given by %(axz)nm_

B (0, a)
Soln, :
Here,
X213 4 y213 = g2/ P (x,»)
2 .2 - @ _
= 3TN0 A(a,0)
:.'ﬁdl =_x“” =_2,_1£
dx y- 13 N
2
dy y213
= 1+[-d_x] —1+x2,3
a2/3 .
= X203 = a*fxm . (D

From the figure, the entire length of the astroid is
0 2

(2] «
o (tr
0

4J’a113x—|/3 dx

4all® 287
2/3

u

= 4gih - g2l
2/3

= - 6a.

e Since the length of an arc is always positive, we infer that the entire length of the astroid
is 6a.

4 x arcAB

i
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v X 2. X
(b) The required arc length = { 1+[%) dx = {a'®x""Pdx (by (1))
0 0

= g'? x_m_ ’ = a'® _x_zf_
B 2/3 ], 2/3

= 3 angan o 3 ey,

~

Example-3 : )
Show that the entire length of the curve x2(a? —x2) = 8a?y? is nav2.
Sol, : ' SPU, April-2016

The given curve is symmetric about all X-axis, Y-axis and the origin. Putting y = 0, we

2002 — y2 /az_xz. .
5—%2—"—), we have y="¥" _~_ Hence -a <x<a
a ¥

2«/§a

is the only possibility for getting y real. The shape of the given curve is as shown in the figure.
It contains two equal loops.

get x € {0, = a}. Also since y*> =

Here 8a%y? = x%(a? - x?) }(
2, B 2 _ 42 2
= 16a y‘:i-x— = 2x (a® — x¥) + x*(- 2x)

- dy _ x(a? - 2x?%)

"t b

A ‘»0 .". T

= 1+ dy 2= 1+ x(a® - 2x?) ¥ a,0) ' 0 A(a,O).’
dx _ 8a’y '

L [x@? - 2P .
8a2x2(a2 —)-'2) . ’ .

I
—

_ 8a* —8ax? +a* ~ 4a’x* + 4x*
8a2(a2 - x2)
_ (3a% -2x2)?
8a%(a? - x?)

From the figure, we say that the entire length
= 4arcOA

a dy 2
= 4°J l+[2—;)dx
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=4j' 3a? - 2x2
" 02a

s/f\/a2 - x? a

< 2 ' 2 _ .2
=4 4 I, DL dx
![Za\/i\/az -x* 2aV2fa? < g2

| —_45[2\/5\/:2—?2 . a:\/—;z}dx |
B e e )
ol ()]

a 2\2a

n

= 4[%sin"(l)+0}= 4%2 = a2,

Example-4 :

Find the length of the cardioid r = a(] + cos) lying outside the circle r = — acos9.
SPU, December-2015, April-2015
Soln, :

First we find the angle between two curves at the point of their intersection.

' 1 T
By comparing them, we get a(l + cos6) = — acos® => cos® = — 5 = 0 = Nig
2n  4n ) ) .
= 0= 33 From the figure, we see that the given curve is symmetric about the polar
axis and the required arc length is arc ABC = 2arcBA. ,
=£8
Now for the curve r = a(1 + cos). 0=7

, \2
24 (%] a*(1 + cos)? + a®sin’ 0

a® (1+2cos0 + cos?9) + a2.‘sin2 0
2a%(1 + cos0) k .

0
4q? 21—,
a*” cos (2)
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Hence the required arc length

27/3 dr 2
2arcBA = 2 [rr+|=| g
0 de

2n/3 0
2 j 2acos [—)de
o 2

2n/3 .
8a [sin _9_] !
21 .

Sa(sinl;-—o] = 4a43.

| INTRINSIC EQUATION |

m  Definition :

Intrinsic equation : Let A be a fixed point on a curve C and P be a generic point on
the curve. Let y(P) denote the angle between the tangents to the curve at points A and P. Also,
let s = arcAP. Then the relation between s and v is called the intrinsic equation of the curve.

It is customary to fix origin (or pole) as the fixed point A if it lies on the curve. Otherwise

we mention the fixed point explicitly. We follow this convention throughout this section including
exercise. Now we obtain the intrinsic equations of the curve represented in different forms.

m  Theorem-1 :
Obtain the ‘intrinsic equations of the curve represented in (i) Cartesian form (ii) Polar form
Proof :

(1) Cartesian form :

Let A(a, b) be a fixed point and P(x, y) be a generic point on the curve y = flx). We
develop the equation in a particular case when the tangent to the curve at A is parallel to the
X-axis. Then

: H
" d
5= I 1+[Zy] dx e (D)
a
d tany=——. e ee e (2)
an v o /
Eliminating x from (1) and (2) we get a
relation ) \;
Fs, ) = 0 A A’
which is the intrinsic equation of the curve in < ) »X
cartesian form.
v
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Note : If the curve is represented in the form x = fy) or in a parametric form, thef\ the
intrinsic equation can be obtained similarly by eliminating y or the parameter ¢ respef:tlvely.
However, in the polar form, the coordinates are changed, so we give equation in this case
separately.

(2) Polar form : .
" Let A(r;,8,) be a fixed point and P(r, 8). We develop the equation in a particular case
when the tangent to the curve at A is parallel to the polar axis.

". Then,
81 dr}
= 24— | dO
s ef r +(de) (3
)
Now from the figure,
y=0+0¢ e B

where ¢ is the angle between the radius vector
and the tangent at point P. We also know that

tan@=r Q (5)
Qo= e

Eliminating ¢ and 6 from (3), (4) and (5) we get

F(s, ) =0 SO ()]
which is the intrinsic equation of the curve in polar form.

Example-1 :

Find the intrinsic equation of the Cardioid r = a(l + cos8). Hence prove that
52 + 992 = 164%, where @ is the radius of curvature at any point of the curve.

Solt, : SPU, April-2016

) dr )
Here r = a(l + cosB). Therefore — =~ asinf,

do
2c0s? 2 9
g 0 -
Hencetamp:rﬁ:- [+cos® _ _ 2 _ - _cot— = tan|-+=
dr sin® .0 8 2 2 2
2sin — cos —
- w0
Hence = —
$ =373
: ") 36 =n
Also, W=0+0 = @+ =42 = = 4=
‘V. (] 9+2+2 ) RO ¢}

LR e e

1
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Now, s=J re + ﬂ';zde
’ ; do

8
i
0

0
[a¥ (@ + cos0)? +a?sin’6 db

It
8
[ve)
~~
=
1:\
[«]
o
w
2
2,
b5

n
N
2
[«]
©
w

|
a
D

i

[ ]

EN
—

»

2.

® 5
0@
)
(=] [--3

= 4gsin —
= dasin (%‘%) oy (1) . ' Q)

whick is the required intrinsic equation. By differentiating (2), we have

Q:ﬂ = ﬂcos y_r
dy 3 3 6

Hence 32 =4acos (3‘[ - g—) So, s* +99% =164°.

Example-2 :

Show that the intrinsic equation of the curve y* =ax? is 27s=8a (sec’y - I).

SPU, December-2015, November-2013
Soln, : . : .- )

‘We can write the given equation as x=-1— ¥2, Then & _3 |y . ‘
a dy 2Va

Here the tangent to the curve at the origin is Y-axis. Therefore, tan\|1=§x-. That is,

3 |y
tany =— /=
V=3

a . N )
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]

-
o8
W
—~—

—

+
&l\o
QA e
\—/u
PR
15 =

= 2’7x=8a{(1+9y) -1}
da

= 27s=8a[(1+ tan?y)*2 —1] (by (1)
= 27s=8a(sec’y~1).

Example-3 :
Determine the value of @ at the point of intersection of r = a(1 — cos8) and r = acos®.
| |
Soln, :
Compare r = a(l - cosB) and r = acost
we get @ (1 - cos@) = acos@
= a — acos® = acos®

= a = 2acosb

1
0=—
= COs 2

T T
= 9=3.-3

T
: =12
= 3

Example-4 : . .
Find the length of curve y = coshx measured from (0, 1) to (1, ¢). |RIJURENIIINE
Seln, : A
y = coshx

b 2

dy - dy

Length of curve = 1+(—-—) dx L =sinhx
o -! dx dx
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10.

11.
12.

13.

)
= J. 1+ sinh%x dx
0

]coshx d,f

0
= [sinAx],
= sinkl — sinh0

Find the length of arc of the parabola x? =4ay, (a > 0), cut off by its latus rectum.

= sinhl

X

Find the length of the curve y= Iog(ex

_l)fromx= 1tox=2.
+1

Find the length of arc of x = asin2s(] + cos2t), y = acos2t(l — cos2t) measured from th

“origin to any point,

Prove that the length of the arc of x

ar?
t = 0 to any point is >

= afcost + tsint), y = a(sint — tcost) measured fron

T

Find the length of the arc of the curve x=e¢'sint, y=e'cost fromt=0to y= .

2
Show that the length of the arc of the semi-cubical parabola ay? =x3 from the verter

to the point (a, a) is % (1332 -8y,
Find the perimeter of the curve r = a(l + cosB) and show that the arc in the upper hali
of the curve is bisected by 6:;- \

Prove that the line 4rcos® = 3a divides the cardioid r = a(l + cos8) into two parts such
the length of the arc on either side of the line are equal.

2n
Show that the arc of the upper half of the cardioid r = a(l -~ cos8) is blsected by 6= .
Find the intrinsic equation of the cycloid x = a(t + sint), y = a(l - cost) and prove that
x? + 9% =16a?.
Find the intrinsic equation of the parabola y? =4ax.
Find the intrinsic equation.of the astroid x =acos’0, y=asin®@ when s being measured
from (i) 9— —, (i) 0 =0.

Find the intrinsic equation of 3ay® =2x3.

o
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[AREA OF A SURFACE OF REVOLUTION |

Consider Fig. If the arc and broken line extending from A to B are revolved about the
each generates a surface. The segments of the broken line trace n frustums of right

X-axis,

circular cones. We shall say that the sum of the areas of the frustums apﬁrqximate the area of
the surface traced by the arc .KTB and we shall define the area traced by the arc as the limit
of the area traced by the broken as n increases and the length of each segment approaches zero.
Y

In figure we show an enlargement of a
representative segment of the broken line AB
and the subtended arc. In a complete
revolution’ the chord P, P, generates a
frustum of a cone whose slant height is the
length of the chord and whose bases have
(e and f(x,) are radii. According to a
formula from solid geometry, the area of a
frustum of a right circular cone is

n(ry + ry |,
where r| and r; are the radii of the bases and
[ is the slant height. Hence the area S, traced

b) PkPk+l is
Sk = LA + e IN@x)” + (By,)’

By the law of the mean,
| Ay = f'(x)Ax,, where X <X <X

And

f@R + o) = 2£(x),

1
”
where xj =E(xk + X))

21 F () L+ LF (P Ax,,

and the area traced by the broken line AB is

Hence Sk

1

S, = 2n kﬁ‘, FEO TGP Ax,
=1

We define the area of the surface of revolution of the arc AB as the limit of S, as
n — o and each Ax, — 0. Thus, by the Bliss theorem

b ’ ‘
S = 21 [ f(x) YU+ [ dx - (1)
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Formula (1) can be expressed more generally by

S=2nfyds, A | w 2

where ds = (@) +(dy)? . . ' . /
Definition : |
Surface Area for Revolution about the x-axis

If the function y = f(x) 2 0 is continuously differentiable on [a, b], the area of the surface
generated by revolving the curve y = f(x) about the x-axis is 4

2 ’ (Y
S = £2ny 17(2;] dx
h —_—
= [2nf(0) 1+ (Fx) dx _ w (3)

Surface Arca for Revolution about the y-axis

If x = g(x) 2 0 is continuously differentiable on [c, d], the area of the surface generated .
by revolving the curve x = g(y) about the y-axis is

d 2
S = !21ux‘/l+(;—i;1 dy
d —_ ' | - :
= [2ng) I+ (0N &y @

Surface Area for Revolution for Parametrized Carves: - | |

If a smooth curve x = f(f), y = g(), a < ¢ <'b, is traversed exactly. once as ¢ increases

from a to b, then the areas of the surfaces generated by revolving the curve about the coordinate
axes are as follows. '

1. . Revolution about the x-axis (y = 0) :

_ b dx 2 dy-{ . ‘ ,
s = {2”\’(3?) +(5) dt . (5)

2. Revolution about the y-axis (x > 0) : A e

b dx 2 Z ' ' ‘
S = {2”1/(5) +(%) a )
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Example-1 :

The arc of the curve y = cosx from x = 0 to x = ki3 is revolved about x-axis. Find the
area of the surface thus generated. 2
Solution :
. Here y = cosx

d
2 sinx

dx .
dy ¥ '
+(Z;J = J1+sin’x .
Area of surface of revolution

/2
2n f cosx 41 +sin® x dx

S

Let sinx = t then cosx dx = dt

i
Also Forx=0, t=0 and Forx;: —2-,t=1

-8

1
2m [yf1+1 dt
o.

1
2n[% 1+ +%1n(l-+\/l+t2)]
0

T2 +In(1++42)-1n2)

=7 |:‘\/5 +In ("1"%5' ]]
Example-2 :

Find the area of the surface generated by revolving about the y-axis the arc of the parabola
x = ZJ— fomy=0toy=3.
Solution : .

Here x = '2‘/;

[
d

i}

i
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© Also ]’H ‘/- J_J;T
S = 21tfx‘/l—;dy

= ZnIVZ,/;-L\/;Tldy
0 Jy

n P
= 4| O*D
3/2 b

8n
= 7[4-‘“ -1

8n
= 7 8-1)
_ S6n
T3
Example-3 :
Find the area of the surface generated by revolving the curve y = 2./%, 1 <x s 2 about
x-axis, :
Solution :

y=2VF = %=7‘=
m-u_ J_JET \
2uj'2f - i

= 41 [M}
32§

- _3372 [3%2 - 2%?)

&l

S
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Example-4 :

The line x =1 -y, 0sys1is revolved about the y-axis to generate the cone. Find

its lateral surface area.

Sclution

Here x=v1 -y dy_

2 s (]y

2n J'(l—- y) Jl+1dy
0

w2
[}

Zﬁn[y—y—;-}; = 2ﬁn[l—~;-] = V2.

Example-5 :
Find the area of the surface swept out by revolving the circle x2 + y2 = 1, y > 0 about
x-axis. A
Solution :
We know that the parametric equation of 2+ y2=1is
x=cost,y=sint,0St<w

. dy
— = — SINf, —~ = COS!

dt dr

h 2 2
Y (dy
ZTE‘[ y (I ) + (EI-) dt

hd
21t_[sint ,lcoszt +sin’t dt

a

S

i

2n [~ costly = 2n [1 + 1] = 4%,

1t

Example-6 :

1
Find the area of the surface generated by revolving the curve y = x3, 0 € x < 5 about
X-axis.

Solution :

Here y = x3 — =3x°

‘

4
2. y=§x+2fromx=0tox=3
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12

21:I

I/2

= j (36x%) (1 + 9x*)V? dx

]
]

1+9x*

n '(1+9x“)3’2 vz
18| 312 ]0

Find the area of the surface generated by revolving the arc in each of Problems 1-11 about -
the x-axis. :

1. y=xfromx=0tox=2

3. y=X3fromx=0tox=2

4-xt
y=sinxfromx=0tox ==«

fromx=-2tox=2



220 Calculus

6. 3y= /36-4x* fromx=-3tox = 3
7. y=efromx=-2tox=2

8, x=R y=tfromt=1tor=3

9. x=lnZy=Rfromt=1tot=3

10. x = qacosB, y = asin® from 0 =0 to 0 =
1. x = asin3, y = acost fromt =0 tot = —;-1:

Find the area of the surface generated by revolving the arc in each of Problems 12-16
about the y-axis.

12. y=xfromx=0tox =2 :
13, x=cosyfromy=0toy=-;—1c

14. y2-x2—a2fromy-atoy 3a
15, y=In (2 -1 fromx=2to x = 4
‘16.x-2t3y-3t2fromt-0tot—2 :
. 17. The cardioid r = 1 + cos8 is revolved about the polar axis. Find ‘the area of the surface
generated.
~ 18, The arc of the spiral r = ¢8 from @ = 0 to = 7 is revolved about the polar axis. Find
_ the area of the surface generated.

19. The upper half of the circle r = 2a cosO is revolved about the polar axis. Find the area
_ of the surface generated.

. 20. Find the area of the surface generated when on arch of the cyclmd x = a(t - sinf),
y = a(l - cost) is revolved about the x-axis. E
- 21. The ellipse b2x2 + a2y? =a2b? is revolved about the x-axis. Find the area of the prolate
spheroid thus generated. What would be the area of the oblate spheroid generated by
revolving the ellipse about the y-axis ?
' 22, A circle of radius a is revolved about a line in the plane of the circle at a distance
) b > a from the center of the circle. Find the area of the surface of the torus thus generated.
Finding Surface Area:

23. Find the lateral (side) surface area of the cone generated by revolving the line segment

y= i, 0 < x £ 4, about the x-axis. Check your answer with the geometry formula. .

1 . .
Lateral surface area = 2 x base circumference -x slant height.

NIN

24 Find the, lateral surface area of the cone generated by revolving the line segment y =
0 < x £ 4, about the y-axis. Check your answer with the geometry fomula.

‘ 1 . .
Lateral surface area = 3 % base circumference X slant height.

Reduction Formulae, Volume of a Solid of Revolution, Rectification, Area of a Surface of Revolution 221

25. Find the lat]eral surface area of the cone frustum generated by revolving the. line segment
x
y= 2 + X 1 £ x < 3, about the x-axis. Check your result with the geometry formula
Frustum surface area = n(ry + rp) x slant height.

26. Find the lateral surface area of the cone frustum generated by revolving the line segment
x 1
y= 2 + 2 1< X < 3, about the y-axis. Check your result with the geometry formula
Frustum surface area = (ry + ry) x slant height.

Find the area of the surfaces generated by revolving the curves in Exercise 27-36 about
the indicated axes. If you have a grapher, you may want to graph these curve to see what

they look like.
(Hint : Express ds = w/d;cz-f-ar_y’ in

27. y=1x,0<x < 1; xaxis
3 15 .
28, y = J;, " < x € —; x-axis terms of dy, and evaluate the integral

4

29, y = ‘/2,\;_;‘2 » 0.5 < x £ 1.5; x-axis

30. y 1/,\:-4-1. 1 € x<5; x-axis
\ 34, y=(é—J'(x2+2)3'2,05x5 V2 ; y-axis

3. x= y_' 0 <y<1; yaxis
(Hint : Express ds = \/dx® + dy® in terms
of dx, and evaluate the integral S =

= [2my ds with appropriate limits.)

w

32 x= (% ¥y -y 1 £y < 3; y-axis

f21vc ds with appropriate limits.)

-

33 x = (yT] (812) 1 €y £ 2; x-axis

I MULTIPLE CHOICE QUESTIONS ] ) }
® Fill in the Blanks :

x/2
1. If J, = [sin"xdx then J, = s
)
ntl, b 221y © 27 (@ None ’
(a) n n-2 (b) n -2 PECRCE 4
®/2
2. [sn"xdx =
1]
63 63x
- —_— — (d) None
@ 256 ® 32 © 512
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3. I, = fsin? x cos? x dx , then Jp 5 =
(1]
-1
p+1 p P I,
(a) iy Jp-24 . P2 (© P-4 Ypg @ ptq
4. Surface area for revolution about the x-axis is S = .
* 2
b v} h dy
(a) J201}1+(£] dx (b) £2ny 1}1+(Z) dx
b dy 2 b dy
. hacl 2 1+|—= |dx
(© {-"?1}”(&) dx ) J my (dx)
" sin” !x cosx
5. M= [sif"xdr then I, = —————
n-1 n-1 n+l n+l
—1 I,_ I,
(@) " | Y (v) PR (© n 1 (d) 2
E u tan” ' x
6. I, = [tan’xdr then I, = — —= -
(@ L, ®) Iy ©) Iny2 @ I,-2
x/4
7. X J, = [tan"xdx then J, =
0
' 1 1 1 1
—_] —_—, —_—, — ],
(a) n—1 n+2 (b) n-1 (C) n+1 n-2 (d) -1
8. If the area bounded by x = f(y), y = ¢, y = d and y-axis is revolved about the y-axis
then the volume of the solid thus generated is V = .
d d d
() j nxdy (b) 2n j x2dy © [mydy @ [2my*dy
9. Volume by the Washer method isV =
b b
@) f(yz -yhdx (b nj(yz ~wdr @ n[Gi+y)dx (@) m () -y dx
10. Volume by the cylindrical shell method is V = ’
b ' b b
(a) 2m [xy dx (b) = [xydx © mfx*dx (d) None
' [ANCWERG |
| ANSWERS |
L®), -2 (@), 3. ), 4. (b), 5. (a), 6. (d), 7. ®), 8. (a),
9. (d), 10. (a).
m 3k N

UNIT || Curvature, Partial Derivatives,
4 | Vector Functions

—CURVATURE

Let f: I = R be a sufficiently many times differentiable function on an interval 1. Then
the points on the graph of y = fix) is curve. However, not all curves could be represented
as a graph of such a real valued function on intervals viz, the figure of a circle with centre
(0, 0) and radius 1 in the XY-plane R2 is one such example of a curve. In this situation, we
have to represent the equation of the circle as x = cost; y = sint, ¢t € [0, 2m]. These are called
the parametric equations of the circle. Also, let us think of a spring put in R3. Then the points

of this spring is a curve. Thus formally we have the following definition of a curve.

®  Definition : _

Locus of the curve : Let I be a closed interval and x = x(¢), y = y(¢) and z = z(?) be real-
valued differentiable functions defined on 1. Then the points (x(¢), ¥(z), z()) in the space is-
called a locus of the curve represented by the parametric equatlons X = x(8, y = y(t) and
z=2zf), te L .

Throughout this chapter we shall be concerned on’ly with curves lying in the XY—plane.
For such curves we have z = 0. Hence they are described by x = x(f) and y = ().

Planer curve : A curve lymg only in- one plane is called a planer curve, -
[ ] Defimtlon : '

(1) Cartesian representation of the curve : Let x = x(z), y-=y® be a ¢ rve"If we
eliminate ¢ and obtain a relation g(x, y) = 0, then this form is called th Cartesmn
representation of the curve. -

(2) Cartesian equation of the curve ; If g(x, y) = O can be written in the form y = f{x)

[respectlvely, x = fiy)l, then y = flx) [respectively, x = f(y)] is called the Cartesian
equation of the curve,

m Example : “ "

Let1=1{0, 1] and x = ¢, y = 2, Then this is a curve that can also be represented by the
cartesian equation y = x2

8 Definition :

Curvature : Let y = f{x) be a curve. Fix a point A on this curve. For a pomt P on
the curve, let s = arc AP be the arc length from A to P. For a point Q on the curve, let

L B —




<

Let [, 1, be the tangents to the curve . !'.. T e
at the points P and Q making angles y and ‘
¥ + Ay respectively, with a fixed line
in the plane. Clearly the angle between
these two tangents is Ay, called the
total bending or total curvature of the
arc between P .and Q. Hence the
average bending or the average
curvature of the curve between these
" two ‘points’ relative to’ the arc length is

%. The. bending or _‘thé o 0

224 » , Calculus
s+As="arcAQsothatAs,=arcPQ. ‘ .

given by

curvature of the curve at P is defined ¥
ds Q9P A7 T A0 3 .
| DERIVATIVE OF AN ARC |

m  Proposition-1 ;

Fix a point A(x,, y,) on a curve given by y = fix). For a point P(x, f{x)) on the curve,
let 5 be the arc length of arc AP, (Clearly, s is a function of x). Then prove that

ds _ ﬂz
£

Proof : . SPUL April-20150 2016, Sceptember-2014
Let y = fx) represent the given curve and

A be a fixed point on it. Let P(x, y) be a generic Y

point on the curve. Let the arc AP = 5. Take = 4 :

point Q(x + Ax, y + Ay) on the curve near to P : Qﬁ

‘Let arc. AQ = s + As. From the right angled
triangle APNQ, we have,

PQ? = PN + NQ? = (Ax)? + (&y)* oy

4 A As
) _P_Q_'2=1+ ﬂz . &P rN
= | Ax Ax . S ’ Ax
RN (E A‘. =1+ Ay"
o) s) A
2 0 N2 Ay} i *X
. ChOl'dPQ . -A—s- =14 _)l) < 0 - L B M >
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=———ee 7 7CH YeCtor Munct;

Taking Q — P, we get chord PQ - arc PQ and Ax — 0, Hence,
ds dyY  ds dy ¥ '
— [ =14+|= —= 4
(&) =1+(2] = &= )+(2)
The proof of the following corollary is left to the reader.

® Corollary-1 :
Let x = x(f) and y = ¥(?) be the parametric equations of a curve. Then prove that

- Exercise :

In the proposition 1, suppose that the curve is represented by x = Ay). Then deduce that

2
the derivative of the arc length £= 1+ _d_x .
dy dy

®  Definition : .

Polar representation of the curve : Let A(x, y) = 0 be a cartesian representation of
a curve. By substituting x = rcos® and Yy = rsin0, in this form we get a representation
g(r, 8) = O of the curve called a polar representation of the curve.

We shall be mainly dealing with the form r = f6) of the curve,

8 Theorem-1 :
For a polar equation r = f{8) of a curve, prove that

2
é = r2'+ ﬂ
de dae

Proof :

Let r = fl6) represent the given
curve and A be a fixed point on it.

Let P (r, 6) be a generic point on
the curve. Let arc AP = 5. Take a point
Q(r + Ar, 8 + AB) on the curve near to
P. Let AQ = s + As.

From the right angled triangle
AONP as shown in figure, we have,

<

>
—

Q (r+Ar, 0+ AQ)

Calculus /1 2018 / 29




Calculus i
226
. PN PN
i = -— = — = PN = rsin AB
sin AO oP_ F
’ ON ON
= —— = — = ON = rcosA®
e costo=gp=
Also, from the figure,
NQ = OQ - ON
=r + Ar — rcosA@
= (1 - cosA®) + Ar
= 2rsin? %9 + Ar
Now from the right angled traingle APNQ, we have,
PQ? = PN? + NQ?
2 o p2in2 .2 A8 ’
= PQ? =r?sin? A8 + | 2rsin 7+Ar
sin a9
PQ =r? 5inA@ 2+ rsin 48 2 +ﬂ
= a0 A8 2 A8 A8
2
2 2 sin 49
cord PQ Y (arc PQ sinA0 Y . (A8 2 Ar
= r? +|rsin| — +—
arc-PQ A6 AB 2 A9 A9
| 2
Taking Q — P, we get chord PQ — arc PQ and A® — 0. Hence,
e : 2 2
ds 2 dr ds dr
-_—l = + | — —_—= 2 —
[de) g (de) RPTI +(de
®  Example-1 :
ds ozl
For the curve r" =g"cosnB, prove that - =a(secnB) » .
Soln, : .

Here r" =a”cosn®. Taking log on both sides,

nlogr = nloga + log(cosn8)

| i R e e

227.
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By differentiating this we get,
ndr__snn® 4 tanne
r do cosnd 0 v
=> r2 412 =72 (1+tan? n6) = r2sec?nd
! : n-1

= rsecn® = a(cos nB)n secn® = a(secnd) "

RADIUS OF CURVATURE |

s Definition : : :
Radius of the curvature : Let P be a point on a curve such. that the curvature of the
curve at P is nonzero. Then the radius of the curvature at Pis defined to be the recrprocal-

of the curvature at P and is denoted by 8, That is, g ___w )

® Theorem-2 : . ‘
Let y = flx) be a curve and P be a point on it. Then prove that the radxus of curvature i
at P is given by : -

3
g=(1+}’lzﬁ

Y2
-4y . e ' o~
where y, =— and ¥, —2;7. SPU, ;Aprll-?.()l(), Sep. 2014, Nov. 2011, 2010
Proof h
Let y = flx) be the given curve. Then tany = 52. Differentiating with respect to s, we get,
53
|
sec wdw 4 =4 ﬂ-4—"3=y2»(£x— ' '
ds ds dx dx dx }ds ds .

= (1+ tan? N, = ‘

( y) s Y2 ds

= (1+)’)d—w"’}’zdx
ds k

(l+y ) ds

o Q=% _(+¥)ds

dy y, dx

2
- g=(1';}’1)m
2

Q- (1 + y12)3l2
Y2
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‘s Theorem-3 :
' Let r = f(6) be a polar form of 'a curve with a point P on it. Then prove that the radius
of curvature at P is given by
' ) g’= (r2 +n2)3/2
4 r*+2rt—rm
where r.= f/(0)- and r, = f(8).

Proof :

~ From the figure it is clear that ¥ = 6 + o,

dy _d8 do
— = — 4t
e & T wta
=48 dodo
C T ds A9 ds

do(.  do)
—l14 =
(%)

Dee 2015, April-2015; Nov, 2010

“We know that tan(ﬁ:’i. Differentiating this with respect to 6, we get,
: h

do) rt-r
2ol =X |=0. "2
soc (p(deJ -

‘ ﬂ_ ’iz;rrz 1"
= 4| R 1+tan’¢

_ r!’—rr2 1 ";2"'"2
= ( ,.2) B +r?

1+—
rlz

We also know that Ssa=,}'r2 + 12, Hence by (1), we get,

ds _ (P +r)"®
dy r*+2l-m
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®  Example-2 :

Prove that if Q is the radius of curvature at any point P on the ‘parabola y? =4ax and
S is its focus, then prove that Q2 ¢ SP*.
Soln,

Let P (x, y) be any point on the given parabola. If the coordinates of the focus S is given
by (a, 0), then

SP = \/(4""‘“)2“‘)'2 = Jx2—2ax+a2+4ax =x+ a.

Now we find 2 for the given parabola y? =4ax. Here 2yy, =4qa. That is, . »= 2_a_ Also,
y

p=-2, .t \ |
o » P(x,y)
32 :
4q?
! 1+39
Hence g _ (1 + )'12)3/2 _ yz ) _ (yz + 4a2)3/2
] - - = 2 )
Y2 - 4q? 4a (o) Py x
v
= q.(@axr+4a’) _ 64a’ (x +a)’ _ dx+ay - dep
- 16a* 16a* a a ) ‘

.

This proves that 92 ¢ SpP.

-

®  Example-3 :
Show that the radius of curvature at any point of the curve x= ae®(cosd - sin6@),
y =ae®(sin® + cos@) is twice the perpendicular distance of the tangent at the point fo

the origin. SPU, September-2014
Soiln, : :
Here, % = ae®(cos0 — sin6) + ae®(— sin® — cosB) = —2ae®sind |

.. dy o
Similarly, —= = 2ge®cos0
imilarly, )

do cosec’0
Hence, y, =% = -~ cotd and y, = cosec?® &S T
3 a2
Thus, 2= O* #W"? _ (+cot? 9‘)6 206" = 2ae®
’ ¥, _ [ cosec’
2ae®

Now the equation of the tangent at a point is
d .
y — ae®(sin® + cosf) = 9 [x - ae®(cos8 - sin@))

= y-—ae’(sin®+cos8) = ~cotB[x — ae®(cosO — sinB)]
= [y—ae® (sin@ + cosO)] sin® = —cosO [x — ae® (cos0 — sin0)]
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= ysin® - ae®sin? 0 — ae® cosB sin + xcos6 — ae? cos? @ + ae® cosBsin® =0

=. ysm6+xcos9 ae® =0

Hence the length of the perpendicular distance of the tangent from the origin is
- ae®

cos®0 +sin? 0

p= =ae® Hence ¢ = 2p.

m  Example-4 : .
. ]
For the cycloid x = a(8 + sin®), y = a(l — cosB) prove that 8 =4acos [E) Also show

that Q2 +92 =16a%, where 8, §, are the radius of curvature at the points where the tangents
are perpendicular. SPU, Nov. 2011, 2010

Sol~, : Y
&
= a(1'¥F cos@), —- =asinb,
Therefore,
_ asinf
N a(l + cos0) P Q
@ w .
2sin g cos g— [6) < \l<9/ *X
= - = tan| —
2cos? — 2

1 040 1 1 1

o= L sec? (—j— - S
’ 2 2 )dx 2cos? 9 2acos? 9 4acos* 9
2 ) 2 2
243/2 3/2
=_(_1_-l_-_y_,)___= 1 + tan® 8 4acost i = 4asec? 8 cos* 8 = 4acos 8
S ) 2 2 2 2 2

If P(6,) and Q(B,) are the points at which the tangents are perpendicular, then

Hence, 8

0, 0,
8, == 4acos ( > ) and $, = 4acos( > ) If the tangents at these points make the angles y, and

y, with the X-axis respectively, then tany, —% = tan(z )Therefore, ¥, =%"-. But -
n L0, . m
- _— — 2=
Y=Y, = 2 Therefore, TS
8. 8
2 2 2

Hence, 9,2+9§=16a2[c0s2 8 + cos? r_8 = 16a? | cos? 8 + sin? 8 = 1642
, 2 2 2 2 2 a
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n Example-S :

For the curve r = a(l - cosG), prove that 9 o r. Also prove that if 8, and 8, are radii

6
of the curvature at the ends of a chord through the pole. Q2 1 Q7 —1—-99—-.

Sol®. : o N SPU, | December-2015 8
Here, r, =asin® and r, =acosB. : o
(7'2 + rl2)312
r*+2rt —rr
_ (a*(1 - cos0)? + a?sin? 0)*/2
" a2(1 - cos0)® + 2a’sin? @ — a?(1 - cosB)cos®
[a* (1 ~ 2cos9 + cos? O + sin? §)]°/?
a* (1 - 2cos0 + cos? @ + 2sin* 6 - cosO + cos?8)
_ [2a%(1- cos®)P - o
3a%(1 ~ cos6) "

) ) 2_,.29312
4a’sin? —
2 4 0
= = —asin —
3 2

Hence, %=

., 0
6a’sin? —

= Lor.
‘Let P(r, 8,) and Q(rz, 6,) be the ends of the chord through the pole, Then 6, + 6, -n.

: |
Then Q’:-lgéa sin? 2 92-—3a sm29 _

Hence, 92 +% = -192 at (sin2 %+sin2 L} '
216 5128 ., n+8 |
5 a [sm 2.+sm —r L

¢: 0,-0,=m)

= -l—is-a2 sin? 9'—+cosz &
2, 2

v
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Example'G - [2a% + 2a*cos0]*2
For the curve y = asin2x find ds | : (1+cos8) [a® + acosO + 2a? — 2a? cos@ + a? cosO] , ,
A : _ [2a* (1 + cosB)p*? :
Sol , 3 L (1 + cos@) 3a?
" dy - :
y = asin2x s ~==2ac082x : 9\
dx : . _ [2a2 + 2cos? (—2-)]
: ds dyY o ) )
We & . Q1 L [+ ad? cos? 3q2 . 22
e know that o 1+(d’,‘) 14 4a cos 2x | a? - 2cos (2) | _ |
s Example-7 : 32 -
. : ; . . T . [4a2 cos? (— )] 8a? cos? ( 9) C
Find radius of curvature of any point on the curve s =8asin® (36{) 4 ; = = 2 =4 acos (2)
‘ ) 6a? cos? [9) 6a? cos? (—9-—) 3 2
SPU Nosenther- 20128 . 2 2
Soln, : ' ' .
I MULTIPLE CHOICE QUESTIONS l
o Q= %”. = 8a-2sin'(%)-cos (—‘—g-)% ' s  Fill in the Blanks :
. 1. If r"=a"cosnd then r, = .
. 4
= Zasin 2(1:—) = Jasin ("3’) (8) - rtann® ® rtann® (c) tann® @ - reotnd
'. Example8 : 2. If y*=dax, S is its focus and Q is radius of curvature at point P, then 9% = .
Find Q for r = a(1 + COSQ). SPUL November-2013 @ s(sp)z ®) %(SP);; (©) 4 (SPy : (d) (SPY?
In, ¢ ' : _ :
So : 3. If y*=4ax, S is its focus and $ is radius of curvature at point P, then g2 a,\ S
& n=-—asinG, r, = -acosd : ‘ o
. 4
We know that . (a) SP () — (P’ © (SP)* @ (P,
- E"z ;’f]‘m _ . : 4. If x=ae® (cos® —sin0); y=ae® (cos® +sinB) then y, = ___ .
+ - . .
v"' i - ‘ (a) tan® (b) cotb (c) — tan® (d) - cotd
_ [a’(l+cose)2 + a?sin? e]SI?. 5, Ifx=a(® +snB); y =a (1 ~ cosB) then y, = '
= a®(1+ cos8)? + 2a?sin? @ + a(1 + cosB) a cos® ’ !
: tan © ] ;)
[a® + 2a%cos0 + a’ cos? 0 + a?sin® 0]/2 (a) tan (g.) ) - (c) cot [5) (d) —tan (5}
~ (1 +cos0) [a? (1 + cosB) +2a* (1 — cos6) + a® cos6}’ :
' Calculus / 2018 / 30
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(a) (_ q, a)

N

234 — =
6. Ifr=a(l-cosd) thnr,=____.
(@) asin® (b) acosd (c) ~ acosd (d) - asin®
7. If r = a1l - cosB) then - . ’
@ & > © 5 @ r
- 8 If r = a(l - cosB) then Q2 q
@ %’_ ®) 2 © %ﬁ @ r
P
$. If y®=4dax, a > 0, then 1+(7y-] =_ .
@ -yz;—f“z ® L - da” © f:—z @ y?
10. If x¥3 +y*3=qa*3 then y, = ___ .
13 13 2/3 173
(a){f) ® —(f) © —(f) @ (_;y-)
1. If x3+y*3=g*3 then 14y} = ____
[43 ”3. a 2 a 23 a
off ol ol e
12. If x%/3 4 y*/* = q#/3 then JH—yf =___ .
PRI . 2} NG
@ (;) ‘ (b) - © (;) . (d) (;)
13. x? (a® —x?) =84’y is symmetric about ____ ’
(a) x-axis, y-axis and origin all (b) x-axis -
(c) y-axis (d) origin
14. For xz(a’—x’)=8a’y2, xe ___ .
®) [~ a 4] (©) [0, 4] d) [~ a 0]
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15. For x*(a* - x*)=8a’y?, x-intercepts are x = .
() za ®a0d - - ()ta0 @dza =zl
16. For x?(a® - x?)=8ay?, y-intercepts are y =
(@ a (b)-a c)xa o
17. The angle between r = a(l + cos@) and r = — acos® at the point of intersection is
9 = | :
(a) ‘N:t.;_‘ . (b) 1t+-‘g- (c) ﬂ—.g— (d)_‘_f:—‘;E

21.

22,

23.

. The curvature of the curve at a point is

(a) Rate of change of the arc length with respect to the independent variable

(b) Rate of change of the arc length with respect to the, angle made by the tangents.
(c) Rate of the change of the bending of the tangent with respect to the arc length
(d) None of the above

. For the curve y = f(x) the derivative of the arc length s, with resbect to x, is given

by

dx Y &Y (dy} a dy Y
(@ l+[¢_1;] ® \/(E) +(2}') () 1"'(2)

(d) None of the above

. Curvature of the line 2xr + 3y = 1 is .

(a0

(b) ‘/1 + p?, where p is the perpendicular distance from the origin
©1 :

(d) None of the above \
‘Curvature of the circle x? + yi=1is _____,
(a) 0 () 2 1 (d) None of the above

The reciprocal of the curvature at a points is known as
(a) Radius of the curve at a.point
(c) Rate of bending of the tangent

(b) Radius of curvature at-a point
(d) None of the above
For the curve y = fx) the radius of curvature at a given point is given by .

a+ y,2)3’_2 (rz + ,.Iz).m dy 2
(@) Y, 2 — 1, (c) |1+ ™ (d) None of the above
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has infinite radius of curvature at any point
(a) Circle with radius 4 (b) Parabola ¥ =4ax

(c)Line y = x v .(d) None of the above )
The radius of the curvature of the curve s = ay is .
, 1+ a? ‘ L '
@ &) ) . ®a
a
© 0 (d) None of the above

26.

The intrinsic equation is ___ .-

(a) a function of ar¢ length '

(b) a relation between arc length(s) and the angle made by the tangent(ut)
(¢) a function F (s, x, y) =0

" (d) None of the above |

27.

_ (c) Equal

28.

- ‘.(c) p=
29,
' (a) cartesian coordinates only

“(c) Parametric- coordinates only
30,

At a point on a curve, with non’ zero ~curvature, the radlus of curvature and the
curvature are e :

@) Addmve inverse of each bther (b) Muluphcauve inverse of each other

o (d) None
For r = f(0) s not l'true.‘
= |2 [dr ‘tand =~
@5 49 r +(de) () o=

(rz 4 ,.12)3/2

r:+2r2 ~-rr,

dr e
- (‘” “(de)z-,
Intrinsic equation of a curve involves _,___.' v
(b) Polar coordinates only
(d) None of these _
For a curve y= ﬂaé)"the-radlus of curvature at a point (. y) is given by __ .,

o L0 aepe

@y T e b
Ly @ G
3 ' RC

©
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31. Rectification is a process of

(a) Measuring the length of arc on a curve

(b) Finding the curvature at a point on the curve
(c) Finding the radius of curvature

(d) None of these

—{ANSWERs |-
1. (a), 2. (b), 3. (o), 4. (d), 5. (a), 6. (b), 7. (c),‘ :
9. (a), 10. (b), 11. (¢), 12. (d), 13. (a), 14. (b), 15. (o),
17. (a), 18. (c), 19. (),  20. (a), 21, (a), 22. (b), 23, (a),
25. (b), 26. (b), 27. (b), 28. (d), 29. (d), 30. (a), 31. (a).
| SHORT QUESTIONS |

Show that curvature of a circle is constant and is equal to the reciprocal of its radms
Show that curvature of a straight line is zero,

Find -3:— for the following curves.

. _ .
(a) y=acosh(£~) (b) y=alog[aza_x2)

Find 5—:— for the following curves.

(a) x = a(t - sin); y = a(1 - cost) (¢) x=ae'sint; y=ae' cost

(b) x = a(cost + ssint); y = a(sint — rcost)

ds .
Find — for the following curves.

de
(a) r = a(l ~ cosd) (b) r2 =g%cos20
Find the radius of curvature at any point of the following curve.
(a) s= uut (b) s = alog(secy)

(d) s=8asin? —‘g—

(f) s=alog (tan (g +—\2K))

(©) s=asec’y

(e) s = 8tany

wasd
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1.

[

(g r

)
B

Find the radius of curvature at any point on the curve.

(@ y=acosh-’2 (b) xy=a’

() x3 +y?3 =a??

x
(d) y=alog (sec ;)

(e) y?=4dax () x=acos’t; y=asin’t
int

(g) x= a;:)st Y= as;n (h) r=abd

® ’=% G) r = a(l - cosB)

(1) r = 2(cos® + sinB)

(n) r= aeawlu

2 _ 42
) e=——————"’a“

(qQ) x = asin2t(1 + cos2f); y = acos2{1 ~ cos2t)
(r) x = a(t + sinr); y = a(1 - sinf)

(s) x = a(cost + tsin); y = a(sint — tcost)

Find the radius of curvature at the given point.

(k) (1 + cosO) =a
(m) r* = a"sinnd

) r= 2 8 —cost 2
(0) r=asec > ;

(a) y = 4sinx — sin2x, at x=§.
(b) x’y=a(x? +a?), at (a, 2a)
3a 3a

3 +y?=3axy, at | ==, =
© x*+y axy [2 2]

@ Jx +J; =1, at the point where it meets the line y =
(e) x =3 + 4cost; y = 4 + 3sint, at (3, 7)
L3

() x = a(l + sinB)cosd; y = a(l + cosO)sind, at @ = -1

asinn®, at the pole.

(h) 7 = acosn®, at r = a.

Show that the radius of curvature at any point of x = gcos®9; y =asin® @ is equal to three
times the length of the perpendicular from the origin to the tangent.

Prove that the radius of curvature at the point (- 2a, 2a) of the curve x2 y=a(x? + y?)
is - 2a.

Show that the ratio of the radii of the curvature of the curves xy=a? and x¥ = 3aty

at the points which have the same abscissae varies as the square root of the ratio of the

ordmates

o gt

: , )
6. Show that the least value of |p| for y = logx is s

: : 13
Find the points on the parabola y? =8x at which- the radius .of curvature is 7-1—6-.

Find p for r™ =ag™cosm® at any point P(r, 6). Also choosing’ a proper value of m show
that in the parabola p? o SP®, where S is the focus. -

[ PARTIAL DERIVATIVES |

The concept of partial derivative plays a vital .role in differential calculus. The different .
ways of limit discussed in the previous section, yield different type of partial der*vath of
a function,

m  Definitions :

Partial derivative of function : Consider a real valued function z = f(x, y) deﬁned on
E < R2? such that E contains a neighbourhood of (a, b) € R2. Let Ag be a change in a. If
the limit, ‘

lim f(a+4a,b)~f(a,b)

Aa—0 Aa : :
exlsts then it is called the partial derivative of f with respect to x at (a, b) and is denoted
f , b
' o @D,

Similarly, let Ab be'a change in b If the limit,

lim f(ab+Ab)- f(a,b) -
Ab >0 Ab

exists, then it is called the pamal derivative of f with respect 10 y at (a, b) and is denoted
i
by I(a b) of fy(a,b) or Z (a,b) ‘ . . . s

8 Notations :

If the partial derivatives f, and j:v exist at each point of E, then they are also the real valued
functions on E. Further, we can obtain the pamal derivatives of these functions, if they are
differentiable. In these cases, we fix up the following notations.

f_az_f=_i o _ A (y
A A 1
X azf af | azf.. | f
3 maly) = S 5(E)

The notations of denvatlves of order greater than two should be clear from the above .
pattern.
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1. Find the radius of curvature at any point on the curve.

® m=a

(d) y=alog (sec f]
[

(a) y=acosh X
: a

(c) x4 y23 = g213

(e) y*=4ax () x=acos’t; y=asin’t
acost asint '
® ¥=——:y=— () r=ad
. a ' '
) r=6 _ G) r = a(l - cosd)

(k) r(1 +cos0) = a
(m) r* = g"sinnd

") r = 2cos® + sind)
- (n) r=gqebeore

(p).9=_.__._‘}r2_a2
a

(@) x = asin2t(1 + cos2p); y = acos2(1 — cos2f)
(1) x = a(t + sint); y = a(l - sint)
(s) x = a(cost + tsint); y = a(sint — fcost)

2. Find the radius of curvature at the given point.

(0) r=asec? g - cos-!

(a) y = 4sinx - sin2x, at x=12t-.
_(b) x?y = a(x? +a?), at (a, 2a)

3a 3a
c) x3+y*=3axy, at | ==, —
(© x*+y =3axy (2 2)

() Vx + J; =1, at the point where it meets the line y = x.
(e) x =3 + 4cost; y =4 + 3sint, at 3, 7)
]

®) x = a(l + sinB)cosd; y = a(l + cosO)sind, at O=— 7

- (g) r = asinn®, at the pole.
) r= acosn®, at r = a.
3.  Show that the radius of curvature at any point of x = acos®®; y=asin®0 is equal to three
. times the length of the perpendicular from the origin to the tangent.
4. Prove that the radius of curvature at the point (- 2a, 2a) of the curve x2y =a(x? + y?)
is — 2a. .
5. Show that the ratio of the radii of the cutvature of the curves xy=a? and. x3 =3aty

at the points which have the same abscissae varies as the square root of thg ratio of the -

ordinates.

Curvature, Partial Derivatives, Vector Functions . | 239

3J'

6. Show that the least value of Ip| for y = logx is —

13

7. Find the points on the parabola y? =8x at which the radius of curvaturé is .7 6

Find p for rm =a™cosm® at any point P(r, 8). Also choosing a propér value of m show
that in the parabola p? o SP?, where S is the focus.

| PARTIAL DERIVATIVES |

The concept of partial derivative plays a vital role in differential calculus, The different
ways of limit discussed in the previous section, yield different type of partial derivatives of
a function. :

®  Definitions :

Partial derivative of function : Consider a real valued function z = f(x, y) defined on
E c R2 such that E contains a neighbourhood of (a, b) € R2. Let Ag be a change in a. If
the limit,

lim f(a+Aa,b)~- f(a,b)

Aa—0 Aa :
exists, then it is called the partial derivative of f with respect to x at (a, b) and is denoted
of .
LA of f.(a.b).
y 3 I (a, b) fi(a. b)

Similarly, let Ab be a change in b. If the limit,
lim Jf(a,b+Ab)- f(a,b)
Ab—0 Ab
exists, then it is called the partial derivative of f with respect 10 y at (a, b) and is denoted

0
by %I(a,b) of f,(a,b) or z,(a, b). | |
®m  Notations :

If the pamal derivatives f, and j:v exist at each point of E, then they are also.the real valued
functions on E. Further, we can obtain the partial derivatives of these functions, if they are

differentiable. In these cases, we fix up the following notations. ’

9L _9(F fp= Tl (L
f“‘axZ’ax ox ) Yooyt yloy
_f 3y =ﬂ__(i)
de a—xa“y'ax(ay) wd S e T o\

The notations of derivatives of order greater than two should be clear from the abcve

pattern.
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i Remark

As we have seen in the above example, in general, f,, and f,x need not be equal, even
f they exist.. The following proposition gives a sufficient condition fro them to be equal. We
wccept it without proof. However, we shall be dealing only with the funcuons f for which these

wo are equal.
1 Proposition

Consider a real valued function z = fx, y) defined on E < R? such that E contains a
wighbourhood of (a,b)e R2. If f,, and f,, exist and are continuous, then fy, = fy.

Throughout this chapter our blanket assumption will be that the operation of taking partial
ferivation is commutative. That is, for function f of two variables f, = f,.

¢ Example : '
a u ?u _

8y2 =0. Also prove that — = ——

For u =x - 3xy prove that —- a 23y ayax_

S_ol". :
Here u=x3-=3xy%.
- %u 6 %u

ou ou
H , —=3x2=-3y?; —=—-6Xy; —— = —~ =—
ence ™ ‘3x y 3 xy a3y y 3yox
% o
ngﬁx; 5;3"—"—64‘
2 2
Hence, a—:--6,\: 6x=0 and —— Fu o

% 3y ayox

{ HOMOGENEOUS FUNCTIONS |

Let us observe the following expressions carefully.
() A y)=xtyt -2’y + 07
2) fr(xy)=xtyt —x5y? + xby?,
~ The combined degree of x and y in each term of the first expression is-6 and that in the

econd expression is 8. Can we determine whether the combined degree of x and y in each

. X . . .
erm of the expression ;‘+_y‘_ is same or not ? It seems difficult to determine. Let us develop

he fi ollowing tests.

Curvature, Partial Perivatives, Vector Functions o : ; .
Test-1 :
Y

Let us take ¢t = e .

Then xy*-x*y*+xy’ =28 (¢4 -1 +15)=x§f(()

and -yt xSy +abyt=xb (¢ - +2)=xPg(D), - .

where f and g are functions of one variable ¢, :
Test-2 :

Now, let us replace x by tx and y by #y. .
"Then  fi(en )= (R®) - (PGP + (@ OF =1£(x )
and  f(0n 1) = @) - @) () + @SN =12 f,(% ¥).
s  Definitations : A ' ,
Homogeneous function : A function z = S, y) is said to be a homogeneous functton of

degree r, if f(tx, ty) = ¢ f(x, y) for some real number r or if f (x, y) = x g( ) Otherwnse, f is’

said to be a non-homogeneous function. : . S ,:‘

s Example1 : : A "

Let f:R?\{(x,y):y=-x}—R defined by f(,{, )-f—:—l Then prove that fis a N
homogeneous function of degree 0 and f, and f, exxst at each point of - the domain.
Sol”. : :

Clearly f(tx, ty) J(x, y)-t° f(x, y). Thus f is'a homogeneous functlon of degree 0
- Now for any (x, y)e R2 with x + y # 0, we have,

SEEND-G-NW _ 2y ‘
fx(xr y) . (x + y)z - (x + y)z \
and fy(ny)= CrNED-Gx-nD _ —2x,2_
(x + y)* (x+y) '

s Example-2 :

s | ‘
fiR*\{(0,0)} >R defined by f(x, y)=‘§+—‘/;-' is a homogeneous function of -

3
14 Y
degree e
(@)Y - (y)S £US [xVS — yus] 1 '
f( v LV) (u)a +(fy)3 = 13 [x3 + y3] f(xv y) t 5 f(x’ )’)

Thus fix, y) is homogneneous function of degree’ -}5‘1
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B Theorem-1 : State and prove Euler’s Theorem for z = Jx ¥
' SPU, April-2015,

2010, l)eccmbcr-?(ilS, November-2013

Statément :

Let z = f(x, y) be a real valued function defined on E c R2. Suppose that f is a
tomogeneous function of degree n. If f, and f, exist on E, then

x——+y£=nz

o dy ' A ¢
*roof : _ . A ‘
Since z = f(x, y) is a homogeneous function of x, y of degree n, we can write
-y
z=fx, y)=x"g|=
fxy)=x"g . SO ¢3)

Differentiating (2) partially with respect to .x, we get,

02 [ 2 )y e [ 2)(- 2
ox = g(x)-kx g(x xz)

a_z_ " =yt ye 2 . .
Hence, xax nx g(xJ x"=1 yg (x | R 3)

Similarly, differentiating (2) partially with respect to y, we get,

92 _ (21 a1 (2
= (2 2)

. "% iy

—= =~ e ore vee eee oee (4
Hence, y 3 A i b )
Adding (3) and _(4) we get,

/
xg—i-i-y%yg:nx"g(%J:nz

This completes the proof.
* We note that the converse of Euler's Theorem also holds. That is, if a function z = f(x, y)
atisfies (1), on a certain domain, then it must be homogeneous on that domain.
I Remark :

‘Now onwards we shall not mention the domain of the functions under discussion. Also,
vhenever we use the derivatives of functions under discussion, we assume them to be
ufficiently many time differénfiable.

1 Corollary-1 : _
Let z = f(x, y) be a real valued function defined on E C R'Z. Su?pos_e that f is a
romogeneous function of degree n and that all the second order partial derivatives of f exist

ind are continuous.
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Then prove that

d%z 092 2
x2—+2xy——z+y22—£=n(n—l)z

ox2 oxdy y? SPU,

Novcmbcr-ZOl_}

Proof :
Since z = f(x, y) is a homogenecus function of x, y of degree n, by Euler’s Theorem, .
x (4 +y % _ nz '
ox dy AR &)

Differentiating (5) partially with respect to x, we have,
9%z 9z 9%z oz
Xt 4y ——=p—
PRI oxdy >
which, on multiplication by x, gives
, 9% oz %z _ oz

—_—t X — — = px —
Tt ox hiied oxdy i
., 0%z d%z oz
Hence, x* Zi4xy 2l =(n-nxZ
ence, x 3 + xy 370y n-Hx ™

Similarly, differentiating (5) partially with respect to y and then multiplying the result by y,
we get, '

%z 9%z 9z : B
iy 2 ==y 2 o
SRR (n-Dy P e ver e e e (6)
Since __82z ______82z we get
© ay  waxt B
9%z 9%z oz
2 2L —_ 2 - -1 el
Mews xyaxay (n~-1y PR roenn e forn e (D)
By adding (6) and (7) we have, .
o 9%z 92z 22z oz oz
2 2 —(n— = -1
x ax2+2xyaxay+y PY (n l)(xax+yay] n(n-1z

This complétes the proof.

m Corollary-2 :
Let u = u(x, y) be a nonhomogenecous real valued function defined on E < R? and

z = @(u) be homogeneous function of degree n. Then prove that
du ou ou) '
—+y—=n—

Ty gw

provided ¢'(u) # O for any (x, y) € E.

X
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Since z = @(u) is a homrogeneous function of x, y of degree n, by Euler’s Theorem we
ave, - ' ‘ :
dz | oz
x—-—-+ —-nz=n(p(u)
ay
= ((p(u ) [(P(u)—]—w(u)
o[ )= n 2.
o) " vw
Corollary-3 :
l.et u = u(x, y) be a nonhomogeneous real valued function defined on E < R? and
= o(u) be homogeneous function of degree n. Then prove that '
0% *u
xz 2xy-a'"5y—+y F=‘V(u)[\v(u)—1]
where y(u)=n ;)(T))-’ provided ¢'(u)=0 for any (x, y) € E.
. u
Example-3 :
. - . . 9%z d’z d?
For the following functions, verify Euler’s Theorem and find x2 — + 2xy —2% + y? gz
ot oy g
y .
=x"log| =
@ a=x () P Sep 2014 N2
5 = cin-! af
() z= sm(y] tan (x)
D

) Clearly, z.is a homogeneous function of degree n.

aZ_ n-1 Y x Y
—= 1 = |+ x" ] =2 = gy Y n-1
‘ nx og x 5 [=mx \log( ) x

0z Yy
—=nx" | KA P |
= X nx og(xJ x

oz - x)1)y x . oz
Also, === =— = y—=x",
Y (YJ(XJ y ¥,
Hence, x%-i-yi:nx" log 2 =nz.
_ ox ay x
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Thus Euler’s Theorem is verified.

By the Corollary-l

.32 9%z
ng—§+2xy aazy+y -a-y—;=n(n-l)z
x

(2) Replacing x by tx and y by 1y, fitx, ) = sin™ (y]ﬂan" [—i—) 0 £, .

Thus z = f(x, ¥) is a homogeneous function of degree 0

Now, -a—z= ] l + 12 .‘2), = 1 _ ‘2'.}' -
” \/ =V e L Wt -at aayt

-2

y

X .
\/_}12—);2 Xt +y

oz 1 - 1 AN -x x

Also, = o e | 2 e |~ 4+
oy x (yz) 1»+y_2(,;] )’\/}’ -2 x4yt
x? B

h-%

y
AL B/
Yyi-2 x4y

hence, x§—+y%-0

2

Thus, Euler’s Theorem is venﬁed
By the Corollary-1,
2 0%z C 9%z 9% ' i
— 42y — Fy2 = - = . =
ax2 xyaxay ‘y ayz'n(n‘l)z 0 (v n=0)

a Example-4 :

1t w=sint [ 22 then prove
=si ) i
N Il then prove the following
du ou . ..
1 —_— Y — =
n xa y 3tanu

: a ' o
(2 .»* “+2 i.i.g.y -a——-3tanu(3sec2 —‘l):'

. ox? axay dy?

SPU, A )ril-li)l. Nov, 2013, 2010 8 :
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242
_ . afx . .
Here u =sin™! ( " +ny Is not a homogeneous function of x, . Writing the given equation
2.2
2,2

Xy . X
. Let z = @) = sinu. Then 7=>X2
Tty ©u) z P

differently, we have sinu =

» which is
Ju ou &) sinu

lomogeneous of degree 3. Hence by Corollary-2, x ™ +y—=3"—=3

X

d 0w  cosu

=3tanu,

vhich proves (1). Also, by Corollary-3, we have,

P a - ,
2 sﬁmya—x%wzgy—‘; =) [W) - 1]

¢'(u) =3 sinu =3¢
¢'(u) cosu
' 2 2 2
= J\:’-a—£-0-2.\:yi-lf-+'y2a—;i =3 tan u [3sec?u -1,

ot T axdy Tyt
| THEOREM ON TOTAL DIFFERENTIALS |

Throughout this section we consider only those functions of two variables that admit
ontinuous partial derivatives on their domain of definition. That is, if we are discussing about
function z = Sfx, y), then £, f;, exist and are continuous on the domain of f

_Where, y(u)=n anu

Theorem-2 :
0z

Let z = f(x, y) be defined on E. Then dz=%dx+gdy

| DIFFERENTIATION OF COMPOSITE FUNCTIONS |
In this section we shall study the differentiation of composite functions. Let z = f(x, y)
e function defined on E c R2. In turn one can have x = o) and y = y(), t € F < R. This
iakes f a function of one independent variable r. That is,

te F — (0, v) € E - (o), W) ‘
The following theorem describes the differentiation of f with respect to ¢ in this situation.

Theorem-3 :
Let z = f(x, y) be function defined on E < R2 and x = ¢(r), y = w(t), t € Fc R.
df _F dx o dy
‘ Thep prove that E_g}i_t+5y-dt' .
Theorem :
" Let z = f(x, ) and u = u(x, y), v = v(x, y) then
. . -
T ETWETE R MW e
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To extend Theorem- or functions of three variables, let u = f(x, ¥, z) be a function
of three variables with x = x(1, y = y() and z = z(f). Then
ﬂ:%é-‘-%ﬂ-‘.au dZ
dt oxdt dyd 9 dr-

| CHANGE OF VARIABLES |

Like the composite functions we can also consider the following situation. Let z = f(x, »)
be function defined on E c R2 and let there be another domain F < R2 such that for each
e Ex=fuv),y= ¥(u, v) € F < R2. This is nothing but the change of variable. In
this case, the following theorem describes the partial derivatives of f with respect to u and v.

Now we prove Euler’s Theorem for three variables. The homogeneous functions of
more than two variables are defined as in Definition-S. More explicitly, a function
H = f(x, x5, ..., x,)} of n variables is called homogeneous if there exists r € R such that for
Slxy, g, o, ) = 1 SOy, xg, ..., xp) for all ¢ € R. In this case, the degree of homogeneity
of His r.

2 Theorem-4 :

State and prove BEuler’s Theorem for function of three variables.
SPY,

September-2014

Statement :
Let H = f(x, y, z) be a real value homogeneous function of three variables x, ¥, z of degree
n defined on E < R3. If f,, Sy f, exist on E, then prove that
JH oH + oH

Proof : o
Since H = f(x, y, 2) is homogenous function of degree n, |

H=x" (p(%,i—)=x"(p (u,v),

where u=2 and v=2.
x x
Hence, %]xi = nx""' @ u, v)+ x" [%%%%+-£€;—T%]
= m”"¢(u,v)+x"|i—%-?’—(£—;z{%(;p]
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oH _ _ ., _ yn-l 9 .. 90 -f e e o (9) On the other hand, verifying directly By putting the values of x and y-in z, we have ‘
=. xa—x— =nx" e, v)—-x"""y 9 P 2 =sin-! (3t — 4%,
oH 39 u _ dp v . [1 3¢ a(p] _ a1 99 4 (3-12%) 3(1 - 4¢2)
_— = + — = x"|-—4+0—| =x w = — = = =
Now. % [au dy  ov dy xdu o du &t~ Ji-@-4ry  1-@ -4y
R ) SUpE y%‘ﬂ, e o e (10) = Example-6 :
. . % “ : If z = f(x, ¥), x = r cos8, y = r sin@, then prove that
S"mlaﬂ” | | a—z 2 + 25‘ 2 = ég" 2 +'l' 9'{ 2 ‘ ' SPU, April-2016, 2015, N 2010
M _ ., .0 | |3y] lor] r*|oe > APTE-S) 0, S, oV
—=x"""z— e e e e (11) ) )
oz - ov Sol®, : '
Adding (9), (10) and (11) we have, Here x, y are functions of r, 6. Hence z is a composite function of r, 6.
oH oH  _9H : ¥ _ %k 2y _ dz
—_ —_— — = nx" , V)= . Thus, — = 9-—— 0—
TVt e =nt | U T o Tayar - S0 Teney
This completes the proof. 3T
P P = [a—] = coszﬁ[a ] +2sin0 cos O é-a—+ 1n29l:az] e e e (12)
A nolted i_n case of the function of two variables, here also we recall that the converse r dx ox dy dy
of Euler’s Theorem also holds. That is, if a function z = f(x, y) satisfies (8), on a certain domain, Also
then it must be homogeneous on that domain. ; _gg - gz g“; +g; gg - sm(-)»:— +7cos L4
. : x
m  Example-5 : ; = %
i 2 2
) dz _a_z_ _ 2 gin2 22_ _ . aZ aZ aZ
Find A when z=sin! (x - y), x=3r, y=4¢>. Also verify by the direct substitution. [69] = 7" sin e[ax] 2r? smecoseasy—+r2 cos’|— ay,
SPU, December-2015, September-2014 f 3 2 .
; 2 . . dz dz T
. = sin*0| —| —2sinBcosf — — :
Sol®. : [39:, [Bx:' - 25in8 cos 3 +cos? 0| — ay e e e (13)
d _dud %dy Addmg (12) and (13) we get, - \
dt  axdt dyd ‘ ' '
, ‘ - [_aﬁ]’ A[aT _[a] [a]
_ 1 1 2 or] r?|o8 ox a
= =3~ =12 _ -
==y~ Ji-(x-y) m  Example-7 :
o -4 If H = = f(2x - 3y, 3y - 4z, 4z - 2x), then prove that — laH 1H -l‘-aﬁ_o o
h__(x_y)z ) 3ay 4 9z '

]
3(1 - 4%)
;;l - (3t - 41%)?

Sol". + | LSPU, November-2013)

Letu=2x-3y,v=3y -4z, w=4z— 2x. Then H = = f(u, v, w). Hence H is a composite
function of x, y, z o
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Therefore,
oH OHOx. dHov 9H ow oH oH _oH
Tt W g g 9H L, H
* wa v awa Zamt0% 23,
' oH oH : )
=222, %
| 325 - (14
Also, i
oH oHOu oHdv oH ow oH _oH _oH
— e LY L 0t — Pataind
dy  Ou oy 3vay+away- 3au+38v+03w
,OH _oH.
2 wF e 3 .. (15
: ou +38v 1
Finally, .
oH JHou -oH dv -oH aw ‘d0H . oH oW
TR e e — b — = 0 g B L0
L% wa wva wa 0% 43 T4,
} oH  oH )
= =422 . .. (16
4av+4aw (16)
) Hence, . .
f_la_H_’_'_l_a_H_’_l.a_H__i}iv_a_H~éfi+ﬂ{__a_H+ili=o.
20x 33 409z.- ou Ow du v v ow

" Example-$ :. .
o o

‘Ifz =f(x, y) and u.é e* cosy, v = & siny. Then prove that g—£=u$+v5v—.

Sol". : :
u=e*cosy v=e*siny,

. Hence, S -
W+ =t = o =y 402
1 " .
= Jc=-2-log(u2 +v?)
Also, e

v—tén = y=tan™ A
ey y A\u ) ‘
" Thus, x, y are functions of u,' v and-30, z is a composite function of u, v.

2u .u
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Now,
¥ Fu Fy ¥ w ] F[ -v
du  Oxou Iy du  Ox|u?+.? dy [ u? +v?
U | u? al_ u | of _ )
L[] [ e e
Similarly,
y ¥ v ¥ [ w Jo .
v |u+v? | ox w4l dy e e e (18)
Addi of o I
ing (17) and (18) we get, u —+v ==L
ou v ox

| DIFFERENTIATION OF IMPLICIT FUNCTIONS |

Many a times we are given an expression f(x, y) = ¢, where ¢ € R is a constant. Note
here that, x and y are associated by a rule however we may not be able to write y as a function
of x. In this case, we say that y is a function of x,"imp]icitly described by f(x, y) = c or y
: s e . . . d d? .
1s an implicit function of x. We obtain the method of calculating Zy and sz using the tools
of partial derivatives.

B Theorem-5 :

Let a function y of x be implicitly described by f(x, y) = ¢. Then prove that

d
) Exy'b}{i SPU, April-2015, Nov. 2011, 2010
]
2 P =2f fo S+ ()2 .
@ GF=- LMl 1) o
& ) _ |
Proof :

(1) We know that f is a function of x and y. Also, y is an implicit function of x. So, f'is a
composite function of x. Hence differentiating the equation f(x, y) = ¢ with respect to x,

we get
i
Fai Fdy_o L X Fd_ b S
a0 ax ya L T d o 1,
5

~ This proves (1).

y 4y _d(dy)_d[-f
@ T wla) w7

e
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AR
f,)?

fydx

- ¢ 8 . 3 .d
5 (-;’; 0+ 55U 2{-]— 5. (g ()45, ) ngJ

- )
‘fy (fxx + fx)' (— %]]— fx [fy.r + fyy ['— %]J
T )2
_ fxx (fy)2 - fyfxfxy - fxfyf’y.r + fyy(fx)z
- - f,)
- f,u (fy)2 - 2fyfxfxy+ fyy(fx)Z
: _ [33
‘w Example-9. :
Find fll when
dx .
(1) xsinx -y -@x+y=0
2) w=py
Proof :

(1) Let f(x, y) = x sin(x = y) = (x + ). -
. Since f(x, y) = 0, by the previous theorem, we have,

(2) Let f(x, y) =

s x cos(x — y) +sin(x — y) -1
Sy xcos(x~y) (- -1

X cos(x — y)+sin(x — y) -1
xcos(x — y)+1

-y

Since f(x, y) = 0, by the previous theorem, we have,
Jo oy -yTlogy _ ylogy-—yx)!
5 x¥ logx — xy*~! x¥ logx — xy*-!

| et

, September-2014

SPU, November-2010

Example-10 :

If z=xy f(l) and z is constant, then show that
x . .

Sol". :

Curvature, Partial Derivatives, Vector Functions

Sl’lﬁ, April-2016, December-2015, April-2015

Let F(x,y)=xy f [l) Then F(x, y) = z, z is constant. Thus y is an implicit function ofx. .
X R .

oF oF dy

So, T

x dy dx

c e (19)

Now, dxfferentlatmg F(x, y) with respect to x, we get,

3
ox

A

[}
*® |~<

xl\c

Similarly,

oF
5 = xf[l)uyf'
X

ip=r Bl
J(

)
GG

Putting these values in (19), we have

oo 2]

x|~<

J

-

- dyl (> y
- [y+xdx:|f[ J_ 2
’ l ly

. f X =£ y+xd—
b4 Y y—y &

f(xJ Y-

y-x

2
]

dx

ool

W
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n Example-11 :

If A, B and C are angles of a A ABC such that sin’A +sin’B + sin2C=K , a constant,
4B " tanC - tanA '
N tanA — tanB
SPU, April-2016, 'I)écembcr-ZOIS, Sep. 2014, Nov.

then_ prove that

2013, 2011

Sol",»-:

Clearly, A + B + C = . So, A=m - (B + C). Therefore, sinA = sin(B + C). Let
F®B,C)=sin? (B + C)+ sin?B + sin2C — K . Hence f(B, C) =0, ie., B is an implict function
of C. So, LBate a0

dC fa
¥

2sin(B + C) cos(B + C) + 2 sinB cosB
sin2(B + C) + sin2B
sin(2x ~ 2A) + sin 2B
- sin2A + sin2B
2cos(B + A) sin(B - A)
2cos(n - C) sin(B ~ A)
—2cosC sin(B - A)
2 cosC sin(A - B)
* Similarly, we get,

Jo = 2cos B sin(A - C) .

Hence,
dB _ cosBsin(A -C)

dcC cosC sin(A — B)

]

_ cosB (sinA cosC - cosA sinC)
cosC (sinA cosB - cosA sinB)

* sinA cosB cosC — cosA cosB sinC

= 7 sinA cosB cosC — cosA sinB cosC
Dividing by cosA cosB cosC, we get,
dB tanA —tanC _ tanC - tanA

dcC tanA — tanB _ tanA —tanB

{
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®  Example-12 :
: 4x%y? 4 5xp3 | '
Check whether z=-% \/%4- \/}fy is homogeneous or not ? If so find its degree.
Sol". :

Here 2z =

n
*
LS TR
k,,
/N
|
N—

. Lo . 7
Given function is a homogeneous function of degree 2

m  Example-13 :
Verify Euler’s theorem for the following
(1) z=3xy—-4xy?,

Sol". :

2
X X X
which is homogeneous function of degree 3.

d
By Euler’s theorem x g—i +y a—; =3z

L.HS. = x(6xy —4y?) + y (3x* - 8xy)
= 6x2y — 4xy? +3x%y ~ 8xy?
= 9x?y —12xy?
= 3[3x2y - 4xy?]
= 3z = RHS.

Euler’s theorem is verified.

SPU, April-2015
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' s Example-14 : ‘4

int | 2 SPU, September-2014 ’ :
2 wesin | o5
) (}’) \ Determine whether the function f(x, y)=-_x+‘y[y_ is homogeneous or not..?

jol”. : ' ! . |
0! l :

—cin | X inu=2> '! S

u = sin [y] = sinu . | —— m

Let, z = sinu, than z=f— f J;[I_Jz:\
: i X
: |

Which is homogeneous function. of degree 0. Let ¢(u) = z

o

Here f(x, y) = —F——=" =
Ju ou o(w) * [1 +2
By corollary of Euler’s theorem we say that x —+y—=n—— x
Yy ary o " dy @ . 1
~ It is a homogeneous function of degree -3
w W (=0
w Ty U s Example-15 :
343 ‘
1 1 1 x If u=2"2" then find 24 yiaz. SPU, November-2013
LHS. = x- — |+ - : Xy ox oy -
: 2\ . x* y : _
-x -x a .
y? y? » Sol'. : :
. ' 3
- = - - - o . x3 [l i (Z) ]
Jyl_x2 JyZ_xZ Here, u=‘x3+},3 = ud =xf(z)
. . . xy 2 (Y X
= R.H.S. Hence Euler’s theorem is verified. x x
3) z=xty - xy?. SPU, November-2013 '« If is a homogeneous function of degre: 1.
Sol". : ~ - By Euler's theorem x§-5+ y % =nu=lu=u
v dx " dy
2
m  Example-16 : ‘
Here z=x° [i’--[%j:’ is a homogeneous function of degree 3. P . \ » ’ ‘
‘ For u =x3 - 3xy?, prove that g—'z‘ + %y% =0, SPU, November-2013
x .
: 9z dz !
By Euler’s theorem, x —+y—=3 : n o,
.}’_l * )’ay. k4 § Sol’. :
~ - LHS. = x[2xy - y?]+ y [x? - 2xy] ) i i3;—:3,\:2--3y2,—g—:—:—ny .
= 2x%y — xy? + x2y - 2xy? ‘ 3 N .
' . ‘ AN o =6x; u =—6x
= 3[x%y - xy?] ‘ ' , \31;2 e
.= 3z = RHS. . S o ?*u  Ju
s ot —=6x—-6x=0,
Thus Euler’s theorem is verified. ' ox* gy *

Caleulus / 2018 1 33 N




M R xn
— (b)
@ y

z Calulus |
1 MULTIPLE CHOICE QUESTIONsﬁ

& Fill in the Blanks : .
"l.i‘ If f¢=x3-3xy’, then ﬁ+ g;': =___

@0 M1 (c) 2 (d‘) -1
2. ¥ u=x’—3x_yz, then :x—zauy = .

(@ 6y - (b) -6y (c) 6x (@ -6x
3K fenp=""2 thenf = __

X4y

‘ 2x -2y 2y | -2x

@Gy ® o © G @ ey
4. If f(x,y)—“—y, then f, = .

2x -2y , 2y ' -2

@ G ® G © Gror @ G

_ 5~ s
5. f(x,y)= J; J-y_ is a homogeneous function of degree

‘ x3+y . :

1 N 14 N
(a 5 (b) 3 () 3 (d) 6

6. Letu =u(x,y) bea homogeneous function and z = ¢ (u) be a homogeneous function

: of dégree n. Then x%+ y%;— = .

$w by n 24 (©) no(w) ) nz
@ ') ( ') )

. If z=x" log(}y—) then y% =__ ., 1

xn-l (c)_x" (d) xn—l ;

259
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. x
8. z=sin! (;)+ tan! (%) is a homogenecous function of degree

@1 ®) 2 © -1 @ o
9. If z=sin! (£)+tan“ (!-) then x§£ = .
y x ox "
0z 9z dz '
(@ -y 3 (b) s © 3 o
2 2
10. If z=sin™! §)+ tan (i) then x? 2—+2xy aai)zy +y? gy: = .
(a) 1 (b) 0 ) n(n - Dz (d) nz
M2y
11. If g=sin? ;3y] then x%”% =
(a) .tanu (b) 2tanu (c) 3tanu (d) 2cotu
dz

12, If z=sin"! (3¢t - 4¢3] then i .

3 3
@ 7 (b) 1-¢ (© - G)) )
2 2 2
13. If z ;ﬂx, ¥) X = r cosB, y = r sin® then [gz—é) +[%] =(%—] + .,
3 %Y 1 9% 1(3Y
® ‘(%J ® (55) © %7 3 @ 7%
14. If u=e* cosy; v=¢*siny then x = . ’
4 fu
@ log@?+v?) () > log @ +v?) (o) tan™ GJ (d) tan ‘(;J

15. If u=e* cosy; v=e*siny then y = .

. (u
(@ log?+v¥) () 7 108 2 +v?)  (c) tan™! (':;) @ tan™ (;)
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6. I f(x, y) = C is implicit function then g—y— =___ .
. X
@ = b - = Y
7, T © 7 @ -7,
17. f(x, y)=x%y* - x3y? + xy° is a homogeneous function of degree
(@ 6 b) 4 © 5 @0
18. f(x,y)=x'y* —x5y* + xfy? is a homogeneous function of degree
(@) 4 . ) 8 ©0 d) 6
19. If f(x, y) = C is a implicit function then f, gx’— = .
(g) S o ©) -f; @ - f
20. The Eule;"s theorem is defined for the functions which are
(a_) Continuous (b) Differentiable (c) Homogeneous (d) None of the above
21. 1 w=cos? | 27 | then x P4,
[J;+J; en xax+yayls . §
(a) —cotu - —1—
)] cot u (c) —stanu (d) None of he above
2. 2
22. It u=log[u then x%+y% is
x+y & Y '
(@ -1
(b) e (© 1 (d) None of this above
2 2
3. If uzlog[u_ then 2 o o*u
x: = % L2
Tty +2xyaxay+y 5;2- is .
(@ -1 (b) e* (© 1 d o
‘4. Degree of homogeneity of u =3x2yz+5xy’z +dz* is
(a) 2 () 3 (c) 4 (d) 0
5. f u=f(x-y,y~2z,2—x), then %+§5+§5 =
. ox dy oz —_
@) 1 2
(b) () 3 o
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M] is given then

26. A function u=sin > )
x4yt +2

(a) u is homogeneous function
(b) u is non-homogeneous but sin-! u is homogeneous function

(c) Both u and sin-! are homogeneous function

(d) None of the above

e B
ANSWERS

|ANSWERS |—
20, 32 4@ 5@ 60O T 8@
0.6 L@ 2@ B@ K4, 15e 160
5o, 1B© 00 MO 20 BO U0
26. (©)." 4

[ SHORT QUESTIONS |

.. ou o 92 2
1. Find * and 2= for the following. Also check uil =_<'_9_u_ ;
X & : - dxdy aﬂz"
1
(a) u=—m——= M) =
24yt ' S
= | '
(b) (i) u=log(xsiny+ ysinx)

TR

- (c) u=log(x® +y?) () u=log (tan l)
: x

u = log(x + Jx2 + y?)

(d)

() U= tan” | e
B JI+ 22+ y?

x4yt (2 +y2)
© tnu=572 0 u=log(f—;yfy,-4]
(f) u=x'+ yx (m) u‘; y;IIZ e-(x—a)2/4y

@ u=(2+2)(y* =3y +6)
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% %
Prove that > -, 24 =0, when -
wr @yt

(a) *=tan™ (—f)

(b) u=1log(x? +y?)

(©) u=e* cosax )

(d) u=e* (xcosy— ysiny)

(€) u=2(ax+by)? - x2 — 2, where a?-+42 =1

(f) u=acos(bx + c) cosh by + dj, where a, b, ¢, d are constant,
Prove the following for x = r cosB, y = r sinG.

ox or ox a9
® 5 ® G5
oy
Find ac for‘the following,
(a) e*+e’=2xy (&) X +y* +xf+y¥ =0
(b) ax? +2hxy +by? =1 ) x?+ y* =(sinx)
© x+y* =(x+yy+r - (® (cosx)” ~(siny)y =0
(&) ¥ +y =datxy ~

. Find % for the following :

(@ z=a2+yhx=ar, y=2a . (@) z=xe',x=2t,y=1~12
(b) z=‘tan" [ﬁ}x=2f;}’=1—t2 (d) z=cosh(1}x=t2,y=e’.
: y X
EXERCISE
. %u d*u
. If u=x’, then prove that —— > zay axayax‘
- N -y ag aBu .
K ou= Py then prove that —— % = = ———-azzay
? " o thar 0o D0
_‘ If u=xmy", then prove _ 'a’ e e

For u=e", find all third order partial dcrivatives and compare them.
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2
5. If u=\/x +y?, then find al 2-“
ox? ay2
2
6. If uz—x2+y + 22, then prove that —— a “ M=E

axz By 22 u’
7. X u=(xt+y? 4 22)"2, then prove

ou ou  du 9% 9%
X—ty— 4z = St =
(a). F % +2 3% u b) Fe ® + )
8. I u=logr, where r2 = (x=a)® +(y—b)? +(z —c)?, then prove that
0% |

Sy ou 0w 1

a dy? 972 =R _

9. If u=3(ax+by+cy)? ~(x*+y? +2z%) and if a2 + b2 + o2 =1, then prove that :
o%u az az
axz ayz =

10. Prove that followmg for x = r cosO, y = r sin® then prove that
o Fr_1)(arY (oY
ox?2  H? 2| ox a ||

1. If x=cos0 —rsin6, y =sinb + rcosO, then prove the following.

0
@ 5= © 577
(b) g_z? cose ~— (cos8 — 2rsin®) |
x

12. ¥f u=log (x3 +y* + 2% - 3xyz), then prove the following.

W o w3 O (TSR P .
(@) ox Jdy 0z x+y+z ay 0z (x+y+2z)*
b} ad
13. If u=—m——te, then prove that _a_( l—xz)——)+——(y2 —uJ=
,yz—ny+1 ‘ ox ox dy

’ 0%z - e
14. If x*y»zz =gq, then prove that 573y =—(xlog(ex))™", when x = y = 2,

2 2
aaaz a:,whenx—y~z-1
Xxdy .-

. ' 9%z
15. If x‘y-"z“=.'c~, then ﬁnq _3?
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. 2
B2y % _%2) _, 1_a_z_§£ )
16. If z= Ty , then prove that (ax % > 3y
d%u 82 8214
17. I u=log (¥ +y +2%), then find (x* +* +z2)( 37 azz).
, : u %u L.
18. If u=f(r), where r2=x?+ y?, then prove that — +§;'2_—f (r )+ f(r) where ’
denotes the derivative with respect to r. ,
2 2 P h azu az a u ”, h
19. Let u—f(r), r? =x? + y* + z?. Prove that — e +§;2— é_f‘f (r )+ f(r) where *
denotes the derivative with respect to r.
2
20. Let 8=t"¢"% . Find n for which __2_%(,2 gfj ?)?
' ‘ 2 2
21, If u= f(ax+ y)+ g(-ax+y), then prove that 97u -a? Q—-‘£=0
. axz ay2
22. Verify Euler's Theorem for the following functions.
() u:xyf(l} () u=x"sin2
x x
. 1
(b) u x+y ) u——,—x2+y2
l/4 + yl/4
(c) u= 1/5+y1/s (8) u=ax®+2hxy+by?
$ -z
d) u== -
@ u=5775
. ou ou , 0%u du
23. Find x-a-;+}’g and x? 3-;+2xya-a;+y ay2 for the following.
(a) u=cos™ d) u= Xy
L2+ y .
b) u=log{——— = 2l o(2
(b) 8( e ] (e) u= xf(x) (x]
X y+xy . x ylx
© w=—gsi ® u=|=
+ y? y

[reon i N S A T e e R aaate

Curvature, Partial Derivatives, Vector Functions

265

2ty BT
(g) u=log (x’ vy ) ; (“Q u=smn [x”’ Ty
_ <13 4 yns o =__________sz-&-y2
(h) u=sin™ T O ¢
x“ + ‘ .
) u=tan“( x+yy ) (0) u=log(x* +y° -x%y - xy?)

172 1/2
; - -i ’x +y
() u=cosec [ PNTE ]

(k) u=sec™! (______ﬂ *+y )

x+y
3448
(h u=tan™ {u)
xX=y
d?y
24, Find —= ey for the following.

(a) x*-3axy+y*=0
(b) x*=3ax* +y*=0

(c) x"+y"=am
d) x*+y* =3axty
25. If z = f(x, y), x = r cos®, y = r sin®, then prove the following.

9z a I 0z
(a) ax—co ear - 956
2
(b) 33y (r" cosn) =—n(n-1) r"-2 sin(n - 2)0
2 2 2 2
(C) % + iz- = 8_2 +-l_ %
ox dy or r? { 0o
TR N
ay ort  ror r?oe?
© L%):_ cos20 _ 3%
Oxdy r? ayax
9% _ _sin@cosd _ 9%
) 4 =-———
dxdy r ayax

26. If z= f(x, y) x=e'+e”v, y=e" —e", then prove that — oz az=x271

4
Caleulus 1 2018 / 34 W o

() u=logr, where 72 = x? + y?

(q) u=x?tan™ [1)4‘ y2 Sin_l (i) .
X y) : -

oz

a_y“.
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S

27. If z=f(x, y), x=¢* secv, y e“ tanv tht,n prove that

_a_z_ _ ?ﬁ - az : 2 aZ e
]-(2] -~ [(au)-m &)
28. z=f(x ), x:=ucoso —:v‘sinq.,;iv=.u;'sinot+vqosoc, then -prove

oz % oz oz ¥z 9% 82 82
(au} +[ ) (ax) +(ay) -and 5;;:+ F¥) ayz

29:°0f 2= f'(u,'v),=u =x% = 2%y~ y%,.v=1y,:then show that.

' ) ) .
(x+ y)5§+(x—y)—a—z—=0 is equivalent to %=0.

Coy T G
30, If u=\'/x2 +’yl2 and x3 + ¥? + 3axy=5a%, then % at (a, a).

31..Find =° for the following.

di’

:.(a) u= xlog (xy) and x3+y +3axy 0 (c) u=sin(x? +y’) and azx2 +b%y? =c?

”(b) “‘xzy and " +xy+y (d) u=e*(y~2),y= asinx and z=cosx,
32._“'Fmd xg +ygy g for the followmg .4 ' o

(8) u=3x’yz+ 5xy2z +4z¢ (d) u=sin" [§]+ cos™ (l)= tan™ (ij
e T S S R _ z A\ x
(b) u_s]n(M] el (e)u=[£+‘2+_z_")

> +y? + 72 , : Ay z x

"(C)'u' x +y +z ‘

u= f(x y, =z z—x) then prove that §—+?—'i 91—0

. dy oz '
o _ , %

34 If u= f(x+ay)+ g(x ay) then prove that F—a E¥

35 Let the change of axis be given by x = ucoscc — vsino and y = usina + v cosa, where
9tV 82V 0%V 9%V
o is constant. Also let V be function of x and y. Then prove thdt —;- % 8y2 = + = P

"The functions f, g and h are the component functions
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VECTOR FUNCTIONS

When a particle moves through space during a time interval I, we think of the particle’s
coordinates as functions defined on I :

x = 1), y = g(t), z = h(1),
The points (x, y, 2) = (f(t), g0, h()), t € 1, make up the curve in space that ve call ‘
the particle’s path. The equations and interval in Equation (1) parametrize the curve. A curve

in space can also be represented in vector form. The vector ;
/

tel )

_.)
Kt = OP = fii + gt + h(Dk e (2

from the origin to the particle’s position P(f(f), g(»),
h(t)) at time 7 is the particle’s position vector (Fig. 1).

PED.9OND)

(components) of the position vector. We think of the
particle’s path as the curve traced by r during the time
interval I. Fig. 1 displays several space curve generated
by a computer graphing program. It would not be easy

to plot these curves by hand. pu

Fig. 1 : The position vector r= OP
of a particle moving through space

Equation (2) defines r as a vector function of the
is a function of time

real variable ¢ on the interval 1. More generally, a

vector function or vector-valued function on a domain set D is a rule that assigns a vector
in space to each element in D. For now, the domains will be intervals of real numbers resulting
in a space curve. If the domains will be regions in the plane. Vector functions will then represent
surface in space. Vector functions on a domain in the plane or space also give rise to; “vector
fields”, which are important to the study of the flow of a fluid, gravitional fields, and

electromagnetic phenomena.

N
N

(a) (b}

Fig.2: Computer-generated space curves are defined by the position vector r(®)
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We refer to real-valued functions as scalar functions to distinguish them from vector
nctions. ‘The components of r are scalar functions of ¢, When we define a vector-valued
nction by giving its component functions, we assume the vector function’s domain to be
: common domain' of the components.

Example-1 ¢ Graphing a Helix

Graph the vector function

r(t) = (cost)i + (sint)j + th

"
The .vector .function

r(t) = (cost)i + (sint)j + 1k
defined for all real values of r. The curve traced by r
a helix (from an old Greek word for “spiral”) that winds
und the circular cylinder x2 + y2 = I (Fig. 3). The curve
s on the cylinder because the i and j components of r,

ng the x and y-coordinates of the tip of r, satisfy the
inder’s equation :

x2 + y2 = (cost)2 + (sinf)2 =

Tke curve rises as the k component z = ¢ increases,

h time ¢ increases by 2, the curve completes one turn
ind the cylinder. The. equations

Fig. 3 : The upper half of the

x=cost, y=sint, z=1 helix r(t) = (cost)i + (sint)j + tk

umetrize the helix, the interval

~ % < I < oo being understood. You will find more helices
‘ig. 4,

N

y b4

Fig. 4 ; Helices drawn by computer
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Limits and Continuity : .
The way we define limits of vector-valued functxons is Similar to the way we deﬁne limits
\
or. real-valued functions. \
Definition : Limit of Vector. Functions : ‘ .
Let r()=f()i + g(t)j + h{)k be a vector function and L a vector We say that r has . :

limit L as ¢ approaches #; and write
 lim -
t—1,70=

if, for every number € > 0, there exists a correspondmg number é > 0 such that for all ¢
O<|t-1t<d = () -Ll<e. - ‘

If L = Lyi + Lyj + Lk, then MM 1) = L precisely when

t ¢, , ,
i _ li _ . lim =1."
(SO =11 5 g =1, and 11, M0 =1a
The equation .
. - li 1 lim . . N
t}'l-l)nfo o = (: _")nt f(t))z+(t_‘_')“t g(t)]n( :oh(’)]k &)

provides a practical way to calculate limits of vector functions.

m  Example-2 :

If r(f) = (cost)i + (sint)j + tk, then fmd / 4 r@).
Sol”, :
i lim . lim
t_l)lT:M"(’) (t—-m/4°°s']‘+(t—)1|:/4sm'JJ+[t-—>7v/4 ]k _ !
‘/_ —i +£ += k

:

We define continuity for vector functions the same way We define continuity for scalar
functions.

Definition : Continuous at a Point
A vector function r(f) is continuous at a point ¢ = to in its domain if ¢ -—>t r(t) = r{ty).
The function is continuous if it is continuous at every point in its domain,

From Equation (3), we see that r(#) is continuos at ¢ = £ if and only if each component
function is continuous there.
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®  Example-3 : Continuity of Space Curves

a A" i i
( ) tl:]e Space cur V'es Shown mn Flg. ~: and 4 are Continuous because their COmponent
iunctlons are Contlnuous at every Value Of t in (— ) ‘
©0, ©0),

(b) The function
8() = (cosni + (sing)j + |tk
is discontinuous at every integer, where the greatest integer function

Derivatives and Motion :

| Suppose Fhat r®)=fMi+gM)j+h()k is the position vector of a particle moving
along a curve in space and that f, g and h are differentiable ‘functions of 1. Then the difference
between the particle’s positions at time ¢ and time 7 + At is

Ar = r(t + A - 1(p)

l_t_l is discontinuous.

Fig. 5(a). In terms of components,
Ar

r(t+ Ar) - r(r)
LF(e+ A0+ g(t+ Ar)j+ hit + At k]~ [f ()i + g(t)j + h(k]
= [fE+A0 = FO)i +[g(t + At) = g()] j + [h(t + A1) - hNlk

Z

r'd

nt+At) 0

rt+A9

(a) ) ®)

Fig. 5 : As At - 0, the point Q_?ppronches the point P along the curve C.
In the limit, the vector PQ /Af becomes the tangent vector r(f)

As At approaches zero, three things seem to happen simultaneously. First, Q approaches
P along the curve. Second, the .secant line PQ seems to approach a limiting position tangent
to the curve at P. Third, the quotient Ar/At (Fig. 5(b)) approaches the limit

j

{
H
'
i

Curvature, Partial Derivatives, Vector Functions 271 |

-

lim Ar | fim fC+AN-FO]. [ lim gt +AN-g@®)] .
At =0 A At —0 At At — 0 At J

lim h( + At) — h(?)
* [At -0 At ]k

df |, |dg|. |dh
= |=—li+|>1j+]|— |k
[ dt] [dz]’ [dr]
We are therefore led by past experience to the following definition.

Definition : Derivative

The vector function r(t) = f(t)i + g(t)j + h(Dk has a derivative (is differentiable) at ¢
if f, g and h have derivatives at . The derivative is the vector function
r(t+ A -r(1) ii+-dﬁ . dh

rt_-:——: +'—k.
O=3 = a0 At a' Tl T

A vector function r is differentiable if it is differentiable at every point of its domain.
The curve traced by r is smooth if dr/dt is continuous and never 0, that is, if f, g and ~ have
continuous first derivatives that are not simultaneously O.

The geometric significance of the definition of derivative is shown in Fig. 5. The points
P and Q have position vectors r(r) and r(¢+ + Ar), and the vector PQ' is represented by
r(t + A1) — r(2). For At > 0, the scalar multiple (1/Af) (r(t + Ar) — r(£) points in the same direction
as the vector PQ. As Ar — 0, this vector approaches a vector that is tangent to the curve
at P (Fig. S(b)). The vector r'(r), when different from 0, is defined to be the vector tangent
to the curve at P. The tangent line to the curve at a point (f{tp), g(ty), h(tg)) is defined to
be the line through the point parallel to r(fy). We require dr/dt # 0 for a smooth cprve to
make sure the curve has a continuously turning tangent at each point. On a smooth curve,
there are no sharp corners or cups. X

A curve that is made up of a finite number of smooth curves pieced together in a
continuous fashion is called piecewise smooth (Fig. 6).

G/ ¢,
Cs

Fig. 6 : A piecewise smooth curve made up of five smooth
curves connected end to end in continuous fashion
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Look onée agaih at Fig. 5. We drew the figure for At positive, so Ar points.forward, in
he direction of the motion. The vector Ar/Ar, having the same direction as Ar, points forv»{ard
00. Had At been negative, Ar would have pointed backward, against the direction of .monon.
The quotient Ar/Atr, however, being a negative scalar multiple of Ar, would once again have
sointed forward. No matter how Ar peints, Ar/Ar points forward and we expect the vector

lim
At 0
Ar/At is just what want for modeling a particle’s velocity. It points in the direction of motion
md gives the rate of change of. position with respect to time. For a smooth curve, the velocity
s never zero; the particle does not stop or reverse direction,

Jefinition : Velocity, 'D!recﬂon, Speed, Acceleration

If r is the poéition vector of a particle moving along a smooth curve in space, then

Irldi = Ar/As, when different from 0, to do the same. This means that the derivative

dr
V() = —
U] R
s the particle’s velocity vector, tangent to the curve. At any time ¢, the direction of v .is the
lirection of motion, the magnitude of v is the particle’s speed, and the derivative a = dvldt,
vhen it exists, is the particle’s acceleration vector. In summary,

1. Velocity is the derivative of position ; v =

dr
2. Speed is the magnitude of velocity : Speed = |v|
' : 2
3. Acceleration is the derivative of velocity : a =%=j—;—'
t

4. The unit vector v/|v| is the direction of motioq at time t .
We can express the velocity of a moving particle as the product of its speed and direction :

v
Velocity = [v || —
i IVIJ

Now. let’s look at an example of an object moving along a (nonlinear) space curve.

= (speed) (direction).

Example-4 : Flight of a Hang Glider

A person on a hang glider is spiraling upward due to rapidly rising air on a path having
»sition vector r(f) = (3 cost}i + (3 sint)j + 12k, The path is similar to that of a helix and
shown in Fig. 7 for 0 < ¢ < 4n. Find

(a) the veloéity and acceleration vectors,
(b) the glider’s speed at any time ¢,

(c) the times, if any, when the glider’s acceleration is orthogonal to its velocity.
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Sol”, : . F
@ r =3 cost)i +(3 sint)j + 2k ( ‘ "
y = % = —(3 sinf)i + (3 cosn)j + 2tk N
) . .
= d—: = = (3cost)i — (3sint)j + 2k
dr _ .

(b) Speed is the magnitude of v : o
190 | = (=3sinn)? +Bcosn)? + 21y’

. R
. Fig. 7 : The path of a hang glider
: withposition vector .-
r)=@cost)i+ 3sint)j+ 2%k

= y/9sin’f +9 cos? + 4r% -
‘The glider is moving faster and faster as it rises its path. _ :
(¢) To find the times when v and q are orthogonal, we ldok for values of ¢ for whichv
o v-a =9 sint cost — 9cost sint + 4t = 4t =0 . , »
Thus, the only time the acceleration vector is orthogonal 0y is when ¢ = 0. .
Differentiution Rules : ' ' ' .

Because the dériv;itives of vector functions may be computed component by éomponent, o

the rules for differentiating vector functions have the same form as the rules for differentiating = .~ -

scalar functions.
Differentiation Rules for Vector Functions :

Let u and v be differentiable vector functions of t, C a constant vector, c,'any ‘scalar and '
S any differentiable scalar function. B e .
d

—C=0
dt :

1. Constant Function Rule :

2. Scalar Multiple Rules - %{cu(t)]:cu’(i) ‘
LU= FOu + fou)
3. Sum Rule : %[u(t)«i-v(t)_]:u'(t) +v'(r)

4. Diffgrence Rule : gt- [u(n) -"(')j =u'(e) - v(t)

Calculns 12018 / 35
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5.. Dot Product Rule : %[u(t)-v(t)]:u'(t)-v(t)+u(t)-v'(t)

6. Cross Product Rule : gt- [e(®) < v($)] = w'(£) X v(2) + u(t) x v'(¢)

7. Chain Rule L2 = FOwre)

When you use the Cross Product Rule, remember to preserve the order of the factors.
If u comes first on the left side of the equation, it must also come first on the right or the
signs will be wrong. '

We will prove the product rules and Chain Rule but leave the rules for constants, scalar
multiples, sums, and differences as exercises.

Proof of the Dot Produet Rule :
Suppose that
u= i+ uy(0)j+uy )k
and v = v(Di+v, ()] + v (t)k
Then ‘
"

. Z(“'V)

d '
E (wy, + uyv, +u,vy)

= upy, + Uy, + Uyvy + Uy + UV + U3vy
uy u-v
Proof of the Cross Product Rule :
We model the proof after the proof of the Product Rule for scalar functions. According
to the definition of derivative, .
d lim w(+hyxXv(t+ )~ u(@t)xu(t)
2@ = oo A

To change this fraction into an equivalent one that contains the difference quotients for
the derivatives of u and v, we subtract and add u(t) x v(t + h) in the numerator. Then
d lim W0 + )XVt + h) = u(t) X v(t + h) + u(t) X v(t + h) - u(@) X v(t)
=7 #X V)= 50 h

i - ; + h) —-v(t
= hhmo [——————"(t ks hz ) o0yt 4 by + ey x EER VD z d )]

i - i i li v(t + h) --v()
- hhmo u(t +h; u(t) x hhmo y(t + By + hhmo u) x lmo ;

JERTR RN P et m&’fﬁ

Curvature, Partial Derivatives, Vector Functions 275

The last of these equalities holds because the limit of the cross product of two
vector functions is the cross product of their limits if the latter exist. As A approaches zero,
v(t + h) approaches v(f) because v, being differentiable at 7, is continuous at 7. The two fractions
approaches the values of du/dt and dv/dr at t. In short,

i(uxv)—ﬂxv+ux-d—v
dt dt dt’

Proof of the Chain Rule :

Suppose that u(s) = a(s) i + b(s)j + c(s) k is a differentiable vector function of s and tha
s = f(¢) is a differentiable scalar function of ¢. Then a, b and ¢ are differentiable functions
of ¢, and the Chain Rule for differentiable real-valued functions gives

d da db dc
- = —i+—j+—k
dt [(s)) dar dt J dt
dads, dbds , dcds
=t = je—=
ds dt ds dt ds dt
ds{da, db ., dc
= | —i+—j+—k
dt(ds ds dt )
_dsdu
T dr ds
= SOREE). 6=f0)

Note : As an algebraic convenience, we sometimes write the product of a scalar ¢ and a vector
v as vc instead of cv. This permits us, for instance, to write the Chain Rule in a familiar form :

du  du ds z

where s = f(

Vector Functions of Constant Length :

When we track a particle moving on a
sphere centered at the origin (Fig. 8), the position
vector has a constant length equal to the radius
of the sphere. The velocity vector dr/d:, tangent
to the path of motion, is tangent to the sphere and
hence perpendicular to r. This is always the case
for a differentiable vector function of constant
length : The vector and its first derivative are | |
orthogonal. With the length constant, the change Fig. 8 : If a particle moves on a sphere in such
in the function is a change in direction only, and = 7 way that its position r is a differentiable
direction changes take place at right angles. function of time, then r - (dr/df) = 0
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We can also obtain this result by direct calculation :
r@ - r@t) = c? Ir(@®| = ¢ is constant

ii_[,-(,).,-(,)] 0 ' Differentiate both sides
dt

re)-r@)+r@)-r'@¢) =0
20 -r@t) =0

The vectors r’(f) and r(r) are orthogonal because their dot product is 0. In summary,
CEx. i Ifr

i

|4

Rule 5 with r(t) = u() = v(r)

is a differentiable vector function of ¢ of constant length, then
dr
re == | | .. (@)
m  Example-5 :
Show that r(t) (cost) i +5 j+(smt)k has constant length and is orthogonal to its
derivative.
Sol". :

F() = (cost)i + /5 + (sint) k

lrl = _\/coszt+_5+sinzt =
dar .,
—~ = —sinti + costk
dt
re ; = —sint cost +sint cost = 0

Intégrals of Vector Functions :

" A differentiable vector function R(f) is an antiderivative of a vector function r(f) on
interval I if dR/dt = r at each point of L If R is antiderivative of r on 1, it can be shown, working
one component at a time, that every antiderivative of r on I has the form R + C for some
constant vector C. The set of all antiderivatives of r on I is the indefinite integral of r on I.

Definition : Indefinite Integral

The indefinite integral of r with respect to ¢ is the set of all antiderivatives of r, denoted
y [r@®)dr. If R is any antiderivative of r, then .
Jr®dr=Re)+C
The usual arithmetic rules for indefinite integrals apply.
! Example-6 : Finding Indefinite Integrals
* feostyi + j=2ekydr = ([ cost dryi + ([ db) j - ([ 2 dey . (5)

= (Gint+C)I+E+Cy) j— (1 +Cy)k v (6)
= (sint)i +1j -tk + C C=C,i+C,j-Cik
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As in the integration of scalar functlons, we recommend that you Sklp the steps in
Equauons (5) and (6) and go directly to the ﬁnal form. Fmd an. anudenvatxve for each

component and add a constant vector at the end. . ]

Definite integrals of vector functions are best defined in terms. of components,
Definition : Definite Integral ’ '

If the components of r(t)= f(t)i + g(t)j + M)k are integrable over [a, b], then so- is '
r, and the definite integral of r from a to b is .

jr(':) dt = (j f® dt} (j g dt]] +[j'h(t) dt]
= Example-7 Evaluating Definite Integrals S
j((cost) i+j-2k)dt = (I cost dt}' + (:{rdt‘]j - (Tz: dt]k
° 0 o) \o
' = [sinflg i+l J - [Pk
[0- 01;+[1: -0}j - [n -0k
nj-nk

"

The Fundamental theorem of Calculus for contmuous vector functtons says that
jr(x) de =R}, = R(b) - R(a) '
whem R is any anh_denvatlve of r, so tﬁat R'() = r(1).
®  Example-8 : 4

If acceleration vector of glider is a(t) = - (3 cost)i -3 smt)_; + 2k. We also know fhai h
initially (at time 7 = 0), the glider departed from the pomt (3, 0, 0) with velocity v(0) =3, '
Find the glider’s posmon as a function of ¢. ' _ \

Sol". :
Our goal is to find r(r) knowing

e . d’r |
The _ differential equation : g = 7 - = - (3cost) i-(@3sindj+ 2k

The initial conditions v(0) = 3j and r(0).= 3i + 0 + Ok
Integrating both sides of the differential equation with respect to ¢ gives
v(o) = —(3sint)i + (3cosnj + 24k + ¢

We use v(0) = 35 to find C:
3 = ~3sin0)i + (3cos0)j + Ok + Cl
= 3] + G '
Cp = '
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The glider’s velocity as a function of fime is

dr

Integrating both sides of this last differential equation gives

d - |
Z . wW1) = - (3sint)i + (3cost)j + 2tk

r(t) = (3cost)i + (3sint)j + 12k + C,
We‘ ‘then use the initial condition /(0) = 3/ to find C,:

3i = (3cos0)i + (3sin0)j + (0K + C,

3i =3i + (0)j + 0O)k + Cz

C, =0

The glider’s position as a: function of t is

r(t) = (3cost)i + (3sind)j + 2k

- This is the path of the glider we know from Example-4 and is shown in Fig. 0.

m  Fill in the Blanks :
1. Velocity is v =
: dr . di
@7 O © vl (@) None
2.  Acceleration is @ = .
Z dr v
(a). . b) - () &t (d) None
3. Speed = .
C (@) |v] ) v (©) & (d) None
4. Speed of F=3costi+3sintj+t%k is .
(a) o a4 (b) 9-4¢ (©) 9+ 4r @ o +4
5. If 7 is a differentiable vector function of ¢ of constant length, then
. dr . dr _dr
(@ r 7::‘ b r -d—?‘-'o ) r & =0 | (d) None
|| ANSWERS lr J
( Lo, 2@ 30 4@ 5@

I MULTIPLE CHOICE QUESTIONS '

o = S U S
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EXERCISE

Motion in the xy-plane : T

In Exercise 1-4, r(r) is the position of a particle . r(t) = 2cose) i + (sine) j + 4k, s = 7

in the xy-plane at time ¢. Find an equation in T

x and y whose graph is the path of the particle. | 12- 7(t) =(sect)i + (tans) j + — 3 tk t=e

Then find the particle’s velocity and acceleration
vectors at the given value of t.

L r®)=0@+D)i+@*-1j,r=1

2. r@®=@C+Di+@-Dj,t=1/2

3. r=ci+ % e’j,t=In3

4. r()=(cos2)i+(3sin2t) j,t=0
Exercise 5-8 give the position vectors of
particles moving along various curves in the
xy-plane. In each case, find the particle’s

velocity and acceleration vectors at the stated
times and sketch them as vectors on the curve.

5. Motion on the circle x2 + y2 = 1
r(t) =(sint) i + (cost) j; t = :115 and g

6. Motion on the circle x2 + y2 = 16

t 3n
t 4cos—.|{ + | 4sin— |j; ¢t =mand —
r() = ( cosz) ( sz}, a >

7. Motion on the cycloid x = t — sint,
=1 - cost

in
r(t)=(t —sint)i + (1 — cos?) j; ¢t =mand >

8. Motion on the parabola y = x2 + 1

r@)=ti+(@¢*+1)jit=~10and !
Velocity and Acceleration in Space :
In Exercises 9-14, r(?) is the position of a particle
in space at time . Find the particle’s velocity and
acceleration vectors. Then find the particle's
speed and direction of motion at the given value
of ¢. Write the particle’s velocity at that time as
the product of its speed and direction.
9. rt)=(@+Di+ @ -1 j+2k =1

2 3

t t
= i4+——j+—kt=1
10. r(t)-(1+t)z+ﬁ] 3

13. r(t)=(21n(t+1))i+t2j+?k,t=1

14. r(t)=(e™")i + (2cos38) j + (2sin30)k, t =0

In Exercises 15-18, r(f) is the position of a
particle in space at time f. Find the angle
between the velocity and acceleration vectors

at time t = 0. [cose = %]
ivilal
15. r() =0t +Di+31j+1%k

r(t)=(g t]i +[%1_— 16t2Jj

17. r()=(n @ +1))i +(tan™ )j + 1> + 1 k

16.

=

4 w2, 4 a2, 1
18. r(t)=;(1+t) l+-§(l—t) J +§tk
In Exercises 19 and 20, r(f) is the pbsition
vector of a particle in space at time ¢. Find the
time or times in the given time interval when the
velocity and acceleration vectors are orthogonal.
19. r(t)=(¢-sint)i+(1~cost)j;0<tsin
20. r(t)=(sint)i + 1] + (costy k, 12 0
Integrating Vector-Valued Functions :
Evaluate the integrals in Exercises 21-26.

I .
21, [(3r%i+2j + (= 3)k) dt
0

22. } [(6 ~ 61 +3tj + (%)k] dt

n/4

23. [ [(sine)i + (1 +cost)j + (sec’)k] at
-nl/4
ri3

24. j[(sect tant) i + (tant)j + (2sint cost)k] dt
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|
[[ 2 i+£—z-k]dt
| 1=9 . 142

nitial Value Problems for Vector-Valied
unctions :

olve the initial value problems in Exercises
7-32 for r as a vector function of ¢

. dr ,
7. Differential equation : i —ti—-tj-tk

r(0)=i+2j+3k
8. Differential equation :

Initial condition :

%’; = (1801)i + (180¢ — 161%)
£(0) = 1005
9. Differential equation :

dar 3
dt
Initial c_ondmon :

Initial condition :'

4D g e 4k
AR AL t+1

r®=k
). Differential equation :

— =@ +4Di+1j+ 2%

Initial condition : r(0) =i + j
d2
. Differential equation : o =~32k
i1

" Initial conditions :

r(0)=100k and 3'15’ =8i +8j
d|,_,

2,
. leferenual equauon %—-(t +j+k)
Initial conditions :
s - — dr
r0)=10{ +10j + 10k and — =0
» . . v dr 1=0
B ¥

Tangent Lines to Smooth Curves :

As mentioned in the text, the tangent line to
a smooth curve r(f)= f(#)i + g()j + (DK is
the line that passes through the point
(f (), 8(t), h(1,)) parallel to v(f), the
curve’s velocity vector at . F(7) at ¢ = fg is
equation of tangent line at ¢ = #5. In Exercises
33-36, find parametric equations for the line
that is tangent to the given curve at the given
parameter value t = #

33, r(t)= (smt)z +(? - cost) j + 'k, =0
34, r(t)= (2smt)t +(2cost)j + Stk, ty = 4xn

35. r(t) =(asint)i + (acost) j + bk, 1, =2n
36. r(®) =(cosni + (sint) j + (sin20)k, 1, = g

37. Each of the following equations in parts
(a) — (e) describes the motion of a particle
having the same path, namely the unit
circle x? + y% = . Although the path of
each particle in parts {a) - (e) is the same,
the behavior, or “dynamics”, of each
particle is different. For each particle,
answer the following questions.

(1) Does the particle have constant speed ?
If so, what is its constant speed ?

(2) Is the particle’s acceleration vector

always orthogonal to its velocity
vector ?

(3) Does the particle move clockwise or
counterclockwise around the circle ?

(a) r(t)=(cost)i + (sint)j, 120
(b) r(r)=cos(2n)i +sin(21)j,t 2 0

- _K
(c) r(t)—cos(t 2}

. T
+ t——=1j,t20
sin 3
(d) r(f)=(cost)i - (sint) j,t 20

() r(r)=cos(t*)i +sin(t*)j, 1 20

-
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1. Answer the following by selecting correct choice from the options : . {10)
A Ity = log(ax+b) then_y,-‘ i
(a) (ax+b)n+1. (b) : (ax+‘b)"
© @+ by @ " by
(2) coshr + sinhr = . _
(@ e (®) e~ ©1 @ -1
(3) Directrix of y2 = 10x is .-,
@x=3  ®r=-3  ©i=10 @ x=-10
(4) Asymptotes of y = x3 - 3x2 - 2x are _ ‘
@x=0,1,2y=1 ®x=0-1,2y=1

®

©x=0,-1,2 - (d) Not possible

The curve of r = c0s30 is symmetric about ____, ) l
(a) Polar axis
(c} Pole

(b) Normal axis ‘
(d) Polar axis, Normal axis and Pole

(6) If eccentricity.e = 1 then conic is -
(a) Hyperbola (b) Ellipse (c) Circle (d) Parabola
hud
W) jsinmxdx =
0
63 63 63 '
(@ 356 _(b) 30 © 35e¢ (d) None
Calculus /2019 / 36
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L] .
® I Jp,q=jsin’xéos"xdr then J, . = .
) . - '
@ PFL; - p-1"
p g r-2a _ ® p__,_;-'pn,q
14 : p-1 '
© =7 n » @ o Ir-2y
@ Ifr= a(l - cos@) then p2 = __
ar 8r 8a
® 5 ® 5 © 5 @ r
(10) Velocity is V = i
dr dr
@ = b = © Ivi (d) None
2. Answer any TEN of the following : [20]

(1) If y = cos3s then find y,.

li { Smx
(2) Evaluate | 2)“ (@~ x) tan (—2-;)

(3) If y=¢*sinSx then find y,.

(4) Find the parametric equation for Vx +./y =a ..
(5) Discuss symmetries of the curve xy — 16 = 0.
(6) Transfer the equation r = tanf + secO in cartesian form.

. 1
(7) Evaluate [x’sin™'xdx. .
0

(8) The region bounded by the curve y=.x, the x-axis and the line x = 4 is
revolved about the y-axis to generate a solid. Find the volume of the solid by
shell method. :

(9) Find the area of the surface swept out by revolving the circle #+yP=1y>0
about x-axis. o

e d
(10) For the cuivé y = asin2x the find Zé‘

ot

e AT AR R

e
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(11) For y = x> ~3x° then prove that —5 + — =0,
e P PR
(12) Definition : Acceleration of a particle.
3. (a) State and prove Leibniz’s theorem. ‘ ' [0
. lim ae* - 2bcosx + 3ce™*
(b) Find a, b, ¢ so that =2. s
x—0 xsinx 2 [o
OR
_ 1
3. (@ If x=cos ;;'08)’ , then find y,(0). [0s
(b) Find center - to - focus distance, foci vertices, center and asymptotes for the
2 2 :
hyperbola = - X =1, ' 05
yperbola 2 3 1 . [
4. (a) Discuss intercepts, symmetries, asymptotes, sign of function and hence sketch
2 TR -
x° =1 :
the curve y = . - . [05
y -4 ; . . K ,‘
(b) State when a polar curve is symmetric with respei:t to polar axis 7 Prove it. [05
OR
4. (a) Discuss symmetries, extent, closeness for the curve r = 3(1 + cos0). [05
i =P - [0s
(b) In usual notation prove that r T3 e cos6"
z |
5. (a) Obtain Reduction Formula for Tsin"xdx, where n € N. [0s
0 .
(b) The circle x2 + y2 = a? is rotated about the X-axis to generate the sphere find
its volume. Co e 08
OR . ‘
5. (a) Find the length of arc of the parabola y2 = 4ax, (a > 0), measured from theA yertex .
to one extremity of its latusrectum. (o
Y

(b) Evaluate : (1)

cos? 2xsin® 4x dx (2) _[ tan® x dx

o—nin
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4 . ds 2, [dr
6. (a) For a polar equation r = f(0) of an curve, prove that 2§= re+ I [05]
, 3
3 .
(b) In usual notation prove that p=gj'yl—)—. . ‘ [05]
. 2
OR

6. (a) State and Prove Euler’s theorem for z = f(x, y). [05}

(y ' : f xly+x %
b If 2=xf (;) and z is constant, then prove that = ek [05])
. f y|y-x Exz
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